Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 034703    DOI: 10.1088/1674-1056/ac248a
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Particle captured by a field-modulating vortex through dielectrophoresis force

Bing Yan(严兵), Bo Chen(陈波), Zerui Peng(彭泽瑞), and Yong-Liang Xiong(熊永亮)
School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  In microfluidic technology, dielectrophoresis (DEP) is commonly used to manipulate particles. In this work, the fluid-particle interactions in a microfluidic system are investigated numerically by a finite difference method (FDM) for electric field distribution and a lattice Boltzmann method (LBM) for the fluid flow. In this system, efficient particle manipulation may be realized by combining DEP and field-modulating vortex. The influence of the density ($\rho_{\rm p}$), radius ($r$), and initial position of the particle in the $y$ direction ($y_{\rm p0}$), and the slip velocity ($u_{0}$) on the particle manipulation are studied systematically. It is found that compared with the particle without action of DEP force, the particle subjected to a DEP force may be captured by the vortex over a wider range of parameters. In the $y$ direction, as $\rho_{\rm p}$ or $r $ increases, the particle can be captured more easily by the vortex since it is subjected to a stronger DEP force. When $u_{0}$ is low, particle is more likely to be captured due to the vortex-particle interaction. Furthermore, the flow field around the particle is analyzed to explore the underlying mechanism. The results obtained in the present study may provide theoretical support for engineering applications of field-controlled vortices to manipulate particles.
Keywords:  field-modulating vortex      dielectrophoresis      fluid—particle interactions  
Received:  02 July 2021      Revised:  18 August 2021      Accepted manuscript online:  08 September 2021
PACS:  47.57.jd (Electrokinetic effects)  
  47.61.-k (Micro- and nano- scale flow phenomena)  
  47.15.Rq (Laminar flows in cavities, channels, ducts, and conduits)  
Fund: Project supported by the National Natural Science Foundation of China (Granmt Nos. 11572139, 11872187, and 12072125).
Corresponding Authors:  Bo Chen, Zerui Peng     E-mail:  chbo76@hust.edu.cn;zeruipeng@hust.edu.cn

Cite this article: 

Bing Yan(严兵), Bo Chen(陈波), Zerui Peng(彭泽瑞), and Yong-Liang Xiong(熊永亮) Particle captured by a field-modulating vortex through dielectrophoresis force 2022 Chin. Phys. B 31 034703

[1] Zhang H, Chang H and Neuzil P 2019 Micromachines 10 423
[2] Hughes M P 2016 Biomicrofluidics 10 032801
[3] Yao J, Zhu G, Zhao T and Takei M 2019 Electrophoresis 40 1166
[4] Alazzam A, Mathew B and Alhammadi F 2017 J. Sep. Sci. 40 1193
[5] Chen X, Ren Y, Liu W, Feng X, Jia Y, Tao Y and Jiang H 2017 Anal. Chem. 89 9583
[6] Wu C, Chen R, Liu Y, Yu Z, Jiang Y and Cheng X 2017 Lab on a Chip 17 4008
[7] Çetin B, Özer M B, Çaǧatay E and Büyükkoçak S 2016 Biomicrofluidics 10 014112
[8] Wang Y, Wang J, Wu X, Jiang Z and Wang W 2019 Electrophoresis 40 969
[9] Yao J, Obara H, Sapkota A and Takei M 2016 Biomicrofluidics 10 024105
[10] Yao J and Takei M 2017 IEEE Sens. J. 17 8196
[11] Yao J, Sugawara M, Obara H, Mizutani T and Takei M 2017 IEEE Transactions on Biomedical Circuits and Systems 11 1450
[12] Yafouz B, Kadri N A and Ibrahim F 2014 Sensors (Switzerland) 14 6356
[13] Jones P V, Salmon G L and Ros A 2017 Anal. Chem. 89 1531
[14] Lentz C J, Hidalgo-Caballero S and Lapizco-Encinas B H 2019 Biomicrofluidics 13 044114
[15] Rabbani M T, Schmidt C F and Ros A 2017 Anal. Chem. 89 13235
[16] De Pena A C, Redzuan N H M, Abajorga M K, Hill N, Thomas J A and Lapizcoencinas B H 2019 Micromachines 10 450
[17] Zhang J, Yan S, Yuan D, Alici G, Nguyen N T, Ebrahimi Warkiani M and Li W 2016 Lab on a Chip 16 10
[18] Aghaamoo M, Aghilinejad A, Chen X and Xu J 2019 Electrophoresis 40 1486
[19] Sun H, Ren Y, Liu W, Feng X, Hou L, Tao Y and Jiang H 2018 Anal. Chem. 90 11376
[20] Chen X, Ren Y, Hou L, Feng X, Jiang T and Jiang H 2019 Nanoscale 11 6410
[21] Tajik P, Saidi M S, Kashaninejad N and Nguyen N 2020 Ind. Eng. Chem. Res. 59 3772
[22] Xie C, Chen B, Yan B and Wu J 2018 Appl. Math. Mech. 39 409
[23] Teh E J and Johansen C T 2016 Acta Astronaut. 128 431
[24] Crowe C, Troutt T and Chung J 1995 Particle Interactions with Vortices (Fluid Mechanics and Its Applications) pp. 829-861
[25] Tio K K, Lasheras J C, Linan A and Gañán-Calvo A M 1993 J. Fluid Mech. 254 671
[26] Raihan M K, Li D, Kummetz A J, Song L, Yu L and Xuan X 2020 Appl. Phys. Lett. 116 183701
[27] Volpe A, Gaudiuso C and Ancona A 2019 Micromachines 10 594
[28] MacH A J, Kim J H, Arshi A, Hur S C and Di Carlo D 2011 Lab on a Chip 11 2827
[29] Zhou J, Kasper S and Papautsky I 2013 Microfluid. Nanofluid. 15 611
[30] Shen F, Xu M, Wang Z and Liu Z M 2017 Appl. Phys. Express 10 097301
[31] Shen F, Li Z, Xue S, Li M and Liu Z 2021 J. Phys. D:Appl. Phys. 54 025401
[32] Haddadi H and Di Carlo D 2017 J. Fluid Mech. 811 436
[33] Qiao J, Deng R and Wang C H 2015 Int. J. Multiphase Flow 77 120
[34] Chao K, Chen B and Wu J 2010 Biomed. Microdevices 12 959
[35] Mirbozorgi S, Niazmand H and Renksizbulut M 2006 J. Fluids Eng. 128 1133
[36] Cetin B and Li D 2008 Electrophoresis 29 994
[37] Li M, Li W, Zhang J, Alici G and Wen W 2014 J. Phys. D:Appl. Phys. 47 063001
[38] Yan B, Chen B, Liu F, Wu J and Xiong Y 2021 Appl. Math. Mech. 42 371
[39] Li H, Lu X, Fang H and Qian Y 2004 Phys. Rev. E 70 026701
[40] Tang G H, Li Z, Wang J K, He Y L and Tao W Q 2006 J. Appl. Phys. 100 094908
[41] Lallemand P and Luo L S 2003 J. Comput. Phys. 184 406
[42] Bouzidi M, Firdaouss M and Lallemand P 2001 Phys. Fluids 13 3452
[43] Mei R, Yu D, Shyy W and Luo L S 2002 Phys. Rev. E 65 041203
[44] Yan B, Chen B, Xing Y L and Peng Z R 2021 Chin. Phys. B 30 114701
[1] Effect of Joule heating on the electroosmotic microvortex and dielectrophoretic particle separation controlled by local electric field
Bing Yan(严兵), Bo Chen(陈波), Yongliang Xiong(熊永亮), and Zerui Peng(彭泽瑞). Chin. Phys. B, 2021, 30(11): 114701.
[2] Dynamic resistive switching in a three-terminal device based on phase separated manganites
Wang Zhi-Qiang (王志强), Yan Zhi-Bo (颜志波), Qin Ming-Hui (秦明辉), Gao Xing-Sen (高兴森), Liu Jun-Ming (刘俊明). Chin. Phys. B, 2015, 24(3): 037101.
[3] Vertical assembly of carbon nanotubes for via interconnects
Wei Qin-Qin (魏芹芹), Wei Zi-Jun (魏子钧), Ren Li-Ming (任黎明), Zhao Hua-Bo (赵华波), Ye Tian-Yang (叶天扬), Shi Zu-Jin (施祖进), Fu Yun-Yi (傅云义), Zhang Xing (张兴), Huang Ru (黄如). Chin. Phys. B, 2012, 21(8): 088103.
[4] Microwire formation based on dielectrophoresis of electroless gold plated polystyrene microspheres
Jiang Hong-Yuan(姜洪源), Ren Yu-Kun(任玉坤), and Tao Ye(陶冶). Chin. Phys. B, 2011, 20(5): 057701.
No Suggested Reading articles found!