Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(8): 088102    DOI: 10.1088/1674-1056/21/8/088102
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

The influence of annealing temperature on the morphology of graphene islands

Huang Li (黄立), Xu Wen-Yan (徐文焱), Que Yan-De (阙炎德), Pan Yi (潘毅), Gao Min (高敏), Pan Li-Da (潘理达), Guo Hai-Ming (郭海明), Wang Ye-Liang (王业亮), Du Shi-Xuan (杜世萱), Gao Hong-Jun (高鸿钧 )
Nanoscale Physics and Devices Laboratory, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  We report on temperature-programmed growth of graphene islands on Ru (0001) at annealing temperatures of 700 ℃, 800 ℃, and 900 ℃. The sizes of the islands each show a nonlinear increase with the annealing temperature. In 700 ℃ and 800 ℃ annealings, the islands have nearly the same sizes and their ascending edges are embedded in the upper steps of the ruthenium substrate, which is in accordance with the etching growth mode. In 900 ℃ annealing, the islands are much larger and of lower quality, which represents the early stage of Smoluchowski ripening. A longer time annealing at 900 ℃ brings the islands to final equilibrium with an ordered moiré pattern. Our work provides new details about graphene early growth stages that could facilitate the better control of such a growth to obtain graphene with ideal size and high quality.
Keywords:  graphene islands      Ru (0001)      annealing temperature      scanning tunneling microscope  
Received:  21 March 2012      Revised:  17 April 2012      Accepted manuscript online: 
PACS:  81.05.ue (Graphene)  
  87.64.Dz (Scanning tunneling and atomic force microscopy)  
  81.10.Pq (Growth in vacuum)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2011CB932700, 2010CB923004, 2010CB923004, and 2009CB929103), the National Natural Science Foundation of China (Grant Nos. 10834011 and 60976089), and the Main Direction Program of Knowledge Innovation of the Chinese Academy of Sciences (Grant No. KJCX2-YW-W22).
Corresponding Authors:  Gao Hong-Jun     E-mail:  hjgao@aphy.iphy.ac.cn

Cite this article: 

Huang Li (黄立), Xu Wen-Yan (徐文焱), Que Yan-De (阙炎德), Pan Yi (潘毅), Gao Min (高敏), Pan Li-Da (潘理达), Guo Hai-Ming (郭海明), Wang Ye-Liang (王业亮), Du Shi-Xuan (杜世萱), Gao Hong-Jun (高鸿钧 ) The influence of annealing temperature on the morphology of graphene islands 2012 Chin. Phys. B 21 088102

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[3] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y and Hong B H 2009 Nature 457 706
[4] Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L and Ruoff R S 2009 Science 324 1312
[5] Pan Y, Shi D X and Gao H J 2007 Chin. Phys. 16 3151
[6] Sutter P W, Flege J I and Sutter E A 2008 Nat. Mater. 7 406
[7] Pan Y, Zhang H G, Shi D X, Sun J T, Du S X, Liu F and Gao H J 2009 Adv. Mater. 21 2777
[8] Vázquez de Parga A L, Calleja F, Borca B, Passeggi M C G, Hinarejos J J, Guinea F and Miranda R 2008 Phys. Rev. Lett. 100 056807
[9] Gao L, Guest J R and Guisinger N P 2010 Nano Lett. 10 3512
[10] Gao M, Pan Y, Huang L, Hu H, Zhang L Z, Guo H M, Du S X and Gao H J 2011 Appl. Phys. Lett. 98 033101
[11] Gao M, Pan Y, Zhang C, Hu H, Yang R, Lu H, Cai J, Du S, Liu F and Gao H J 2010 Appl. Phys. Lett. 96 053109
[12] Mao J H, Zhang H G, Jiang Y H, Pan Y, Gao M, Xiao W D and Gao H J 2009 J. Am. Chem. Soc. 131 14136
[13] Zhang H G, Hu H, Pan Y, Mao J H, Gao M, Guo H M, Du S X, Greber T and Gao H J 2010 J. Phys.: Condens. Matter 22 302001
[14] Zhang H G, Sun J T, Low T, Zhang L Z, Pan Y, Liu Q, Mao J H, Zhou H T, Guo H M, Du S X, Guinea F and Gao H J 2011 Phys. Rev. B 84 245436
[15] Zhou H T, Mao J H, Li G, Wang Y L, Feng X L, Du S X, Mullen K and Gao H J 2011 Appl. Phys. Lett. 99 153101
[16] Pan Y, Gao M, Huang L, Liu F and Gao H J 2009 Appl. Phys. Lett. 95 093106
[17] Huang L, Pan Y, Pan L D, Gao M, Xu W Y, Que Y D, Zhou H T, Wang Y L, Du S X and Gao H J 2011 Appl. Phys. Lett. 99 163107
[18] Mao J H, Huang L, Pan Y, Gao M, He J, Zhou H T, Guo H M, Tian Y, Zou Q, Zhang L Z, Zhang H G, Wang Y, Du S X, Zhou X, Neto A H C and Gao H J 2012 Appl. Phys. Lett. 100 093101
[19] Meng L, Wu R, Zhou H, Li G, Zhang Y, Li L, Wang Y and Gao H J 2012 Appl. Phys. Lett. 100 083101
[20] Land T A, Michely T, Behm R J, Hemminger J C and Comsa G 1992 Surf. Sci. 264 261
[21] Starodub E, Maier S, Stass I, Bartelt N C, Feibelman P J, Salmeron M and McCarty K F 2009 Phys. Rev. B 80 235422
[22] Guünther S, Dänhardt S, Wang B, Bocquet M L, Schmitt S and Wintterlin J 2011 Nano Lett. 11 1895
[23] Cui Y, Fu Q, Zhang H, Tan D L and Bao X H 2009 J. Phys. Chem. C 113 20365
[24] Martínez-Galera A J, Brihuega I and Gomez-Rodriguez J M 2011 Nano Lett. 11 3576
[25] Lu J, Yeo P S E, Gan C K, Wu P and Loh K P 2011 Nat. Nano 6 247
[26] Coraux J, N'Diaye A T, Engler M, Busse C, Wall D, Buckanie N, Heringdorf F, van Gastei R, Poelsema B and Michely T 2009 New J. Phys. 11 023006
[27] Cho J, Gao L, Tian J, Cao H, Wu W, Yu Q, Yitamben E N, Fisher B, Guest J R, Chen Y P and Guisinger N P 2011 Acs. Nano 5 3607
[28] Gao L, Ren W, Zhao J, Ma L P, Chen Z and Cheng H M 2010 Appl. Phys. Lett. 97 183109
[29] Eom D, Prezzi D, Rim K T, Zhou H, Lefenfeld M, Xiao S, Nuckolls C, Hybertsen M S, Heinz T F and Flynn G W 2009 Nano Lett. 9 2844
[30] Rutter G M, Guisinger N P, Crain J N, First P N and Stroscio J A 2010 Phys. Rev. B 81 245408
[31] Cui Y, Fu Q and Bao X 2010 Phys. Chem. Chem. Phys. 12 5053
[32] Wang B, Ma X, Caffio M, Schaub R and Li W X 2011 Nano Lett. 11 424
[33] Loginova E, Bartelt N C, Feibelman P J and McCarty K F 2008 New J. Phys. 10 093206
[34] Zangwill A and Vvedensky D D 2011 Nano Lett. 11 2092
[35] Hwang C, Yoo K, Kim S J, Seo E K, Yu H and Biró L P 2011 J. Phys. Chem. C 115 22369
[1] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[2] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 088105.
[3] Experimental observation of pseudogap in a modulation-doped Mott insulator: Sn/Si(111)-(√30×√30)R30°
Yan-Ling Xiong(熊艳翎), Jia-Qi Guan(关佳其), Rui-Feng Wang(汪瑞峰), Can-Li Song(宋灿立), Xu-Cun Ma(马旭村), and Qi-Kun Xue(薛其坤). Chin. Phys. B, 2022, 31(6): 067401.
[4] Molecular beam epitaxy growth of iodide thin films
Xinqiang Cai(蔡新强), Zhilin Xu(徐智临), Shuai-Hua Ji(季帅华), Na Li(李娜), and Xi Chen(陈曦). Chin. Phys. B, 2021, 30(2): 028102.
[5] Direct observation of the scaling relation between density of states and pairing gap in a dirty superconductor
Chang-Jiang Zhu(朱长江), Limin Liu(刘立民), Peng-Bo Song(宋鹏博), Han-Bin Deng(邓翰宾), Chang-Jiang Yi(伊长江), Ying-Kai Sun(孙英开), R Wu(武睿), Jia-Xin Yin(殷嘉鑫), Youguo Shi(石友国), Ziqiang Wang(汪自强), and Shuheng H. Pan(潘庶亨). Chin. Phys. B, 2021, 30(10): 106802.
[6] Edge-and strain-induced band bending in bilayer-monolayer Pb2Se3 heterostructures
Peng Fan(范朋), Guojian Qian(钱国健), Dongfei Wang(王东飞), En Li(李恩), Qin Wang(汪琴), Hui Chen(陈辉), Xiao Lin(林晓), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(1): 018105.
[7] Effect of annealing temperature on interfacial and electrical performance of Au-Pt-Ti/HfAlO/InAlAs metal-oxide-semiconductor capacitor
He Guan(关赫), Cheng-Yu Jiang(姜成语), Shao-Xi Wang(王少熙). Chin. Phys. B, 2020, 29(9): 096701.
[8] Epitaxial synthesis and electronic properties of monolayer Pd2Se3
Peng Fan(范朋), Rui-Zi Zhang(张瑞梓), Jing Qi(戚竞), En Li(李恩), Guo-Jian Qian(钱国健), Hui Chen(陈辉), Dong-Fei Wang(王东飞), Qi Zheng(郑琦), Qin Wang(汪琴), Xiao Lin(林晓), Yu-Yang Zhang(张余洋), Shixuan Du(杜世萱), Hofer W A, Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(9): 098102.
[9] Epitaxial growth of antimony nanofilms on HOPG and thermal desorption to control the film thickness
Shuya Xing(邢淑雅), Le Lei(雷乐), Haoyu Dong(董皓宇), Jianfeng Guo(郭剑峰), Feiyue Cao(曹飞跃), Shangzhi Gu(顾尚志), Sabir Hussain, Fei Pang(庞斐), Wei Ji(季威), Rui Xu(许瑞), Zhihai Cheng(程志海). Chin. Phys. B, 2020, 29(9): 096801.
[10] Atomic-level characterization of liquid/solid interface
Jiani Hong(洪嘉妮) and Ying Jiang(江颖). Chin. Phys. B, 2020, 29(11): 116803.
[11] Machine learning identification of impurities in the STM images
Ce Wang(王策), Haiwei Li(李海威), Zhenqi Hao(郝镇齐), Xintong Li(李昕彤), Changwei Zou(邹昌炜), Peng Cai(蔡鹏), Yayu Wang(王亚愚), Yi-Zhuang You(尤亦庄), and Hui Zhai(翟荟). Chin. Phys. B, 2020, 29(11): 116805.
[12] Charge trapping memory device based on the Ga2O3 films as trapping and blocking layer
Bing Bai(白冰), Hong Wang(王宏), Yan Li(李岩), Yunxia Hao(郝云霞), Bo Zhang(张博), Boping Wang(王博平), Zihang Wang(王子航), Hongqi Yang(杨红旗), Qihang Gao(高启航), Chao Lü(吕超), Qingshun Zhang(张庆顺), Xiaobing Yan(闫小兵). Chin. Phys. B, 2019, 28(10): 106802.
[13] Water-based processed and alkoxide-based processed indium oxide thin-film transistors at different annealing temperatures
Xu-Yang Li(栗旭阳), Zhi-Nong Yu(喻志农), Jin Cheng(程锦), Yong-Hua Chen(陈永华), Jian-She Xue(薛建设), Jian Guo(郭建), Wei Xue(薛唯). Chin. Phys. B, 2018, 27(4): 048504.
[14] Effect of the annealing temperature on the long-term thermal stability of Pt/Si/Ta/Ti/4H-SiC contacts
Cheng Yue (程越), Zhao Gao-Jie (赵高杰), Liu Yi-Hong (刘益宏), Sun Yu-Jun (孙玉俊), Wang Tao (王涛), Chen Zhi-Zhan (陈之战). Chin. Phys. B, 2015, 24(10): 107303.
[15] Elastic scattering of surface states on three-dimensional topological insulators
Wang Jing (王靖), Zhu Bang-Fen (朱邦芬). Chin. Phys. B, 2013, 22(6): 067301.
No Suggested Reading articles found!