INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
The influence of annealing temperature on the morphology of graphene islands |
Huang Li (黄立), Xu Wen-Yan (徐文焱), Que Yan-De (阙炎德), Pan Yi (潘毅), Gao Min (高敏), Pan Li-Da (潘理达), Guo Hai-Ming (郭海明), Wang Ye-Liang (王业亮), Du Shi-Xuan (杜世萱), Gao Hong-Jun (高鸿钧 ) |
Nanoscale Physics and Devices Laboratory, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract We report on temperature-programmed growth of graphene islands on Ru (0001) at annealing temperatures of 700 ℃, 800 ℃, and 900 ℃. The sizes of the islands each show a nonlinear increase with the annealing temperature. In 700 ℃ and 800 ℃ annealings, the islands have nearly the same sizes and their ascending edges are embedded in the upper steps of the ruthenium substrate, which is in accordance with the etching growth mode. In 900 ℃ annealing, the islands are much larger and of lower quality, which represents the early stage of Smoluchowski ripening. A longer time annealing at 900 ℃ brings the islands to final equilibrium with an ordered moiré pattern. Our work provides new details about graphene early growth stages that could facilitate the better control of such a growth to obtain graphene with ideal size and high quality.
|
Received: 21 March 2012
Revised: 17 April 2012
Accepted manuscript online:
|
PACS:
|
81.05.ue
|
(Graphene)
|
|
87.64.Dz
|
(Scanning tunneling and atomic force microscopy)
|
|
81.10.Pq
|
(Growth in vacuum)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2011CB932700, 2010CB923004, 2010CB923004, and 2009CB929103), the National Natural Science Foundation of China (Grant Nos. 10834011 and 60976089), and the Main Direction Program of Knowledge Innovation of the Chinese Academy of Sciences (Grant No. KJCX2-YW-W22). |
Corresponding Authors:
Gao Hong-Jun
E-mail: hjgao@aphy.iphy.ac.cn
|
Cite this article:
Huang Li (黄立), Xu Wen-Yan (徐文焱), Que Yan-De (阙炎德), Pan Yi (潘毅), Gao Min (高敏), Pan Li-Da (潘理达), Guo Hai-Ming (郭海明), Wang Ye-Liang (王业亮), Du Shi-Xuan (杜世萱), Gao Hong-Jun (高鸿钧 ) The influence of annealing temperature on the morphology of graphene islands 2012 Chin. Phys. B 21 088102
|
[1] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
|
[2] |
Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
|
[3] |
Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y and Hong B H 2009 Nature 457 706
|
[4] |
Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L and Ruoff R S 2009 Science 324 1312
|
[5] |
Pan Y, Shi D X and Gao H J 2007 Chin. Phys. 16 3151
|
[6] |
Sutter P W, Flege J I and Sutter E A 2008 Nat. Mater. 7 406
|
[7] |
Pan Y, Zhang H G, Shi D X, Sun J T, Du S X, Liu F and Gao H J 2009 Adv. Mater. 21 2777
|
[8] |
Vázquez de Parga A L, Calleja F, Borca B, Passeggi M C G, Hinarejos J J, Guinea F and Miranda R 2008 Phys. Rev. Lett. 100 056807
|
[9] |
Gao L, Guest J R and Guisinger N P 2010 Nano Lett. 10 3512
|
[10] |
Gao M, Pan Y, Huang L, Hu H, Zhang L Z, Guo H M, Du S X and Gao H J 2011 Appl. Phys. Lett. 98 033101
|
[11] |
Gao M, Pan Y, Zhang C, Hu H, Yang R, Lu H, Cai J, Du S, Liu F and Gao H J 2010 Appl. Phys. Lett. 96 053109
|
[12] |
Mao J H, Zhang H G, Jiang Y H, Pan Y, Gao M, Xiao W D and Gao H J 2009 J. Am. Chem. Soc. 131 14136
|
[13] |
Zhang H G, Hu H, Pan Y, Mao J H, Gao M, Guo H M, Du S X, Greber T and Gao H J 2010 J. Phys.: Condens. Matter 22 302001
|
[14] |
Zhang H G, Sun J T, Low T, Zhang L Z, Pan Y, Liu Q, Mao J H, Zhou H T, Guo H M, Du S X, Guinea F and Gao H J 2011 Phys. Rev. B 84 245436
|
[15] |
Zhou H T, Mao J H, Li G, Wang Y L, Feng X L, Du S X, Mullen K and Gao H J 2011 Appl. Phys. Lett. 99 153101
|
[16] |
Pan Y, Gao M, Huang L, Liu F and Gao H J 2009 Appl. Phys. Lett. 95 093106
|
[17] |
Huang L, Pan Y, Pan L D, Gao M, Xu W Y, Que Y D, Zhou H T, Wang Y L, Du S X and Gao H J 2011 Appl. Phys. Lett. 99 163107
|
[18] |
Mao J H, Huang L, Pan Y, Gao M, He J, Zhou H T, Guo H M, Tian Y, Zou Q, Zhang L Z, Zhang H G, Wang Y, Du S X, Zhou X, Neto A H C and Gao H J 2012 Appl. Phys. Lett. 100 093101
|
[19] |
Meng L, Wu R, Zhou H, Li G, Zhang Y, Li L, Wang Y and Gao H J 2012 Appl. Phys. Lett. 100 083101
|
[20] |
Land T A, Michely T, Behm R J, Hemminger J C and Comsa G 1992 Surf. Sci. 264 261
|
[21] |
Starodub E, Maier S, Stass I, Bartelt N C, Feibelman P J, Salmeron M and McCarty K F 2009 Phys. Rev. B 80 235422
|
[22] |
Guünther S, Dänhardt S, Wang B, Bocquet M L, Schmitt S and Wintterlin J 2011 Nano Lett. 11 1895
|
[23] |
Cui Y, Fu Q, Zhang H, Tan D L and Bao X H 2009 J. Phys. Chem. C 113 20365
|
[24] |
Martínez-Galera A J, Brihuega I and Gomez-Rodriguez J M 2011 Nano Lett. 11 3576
|
[25] |
Lu J, Yeo P S E, Gan C K, Wu P and Loh K P 2011 Nat. Nano 6 247
|
[26] |
Coraux J, N'Diaye A T, Engler M, Busse C, Wall D, Buckanie N, Heringdorf F, van Gastei R, Poelsema B and Michely T 2009 New J. Phys. 11 023006
|
[27] |
Cho J, Gao L, Tian J, Cao H, Wu W, Yu Q, Yitamben E N, Fisher B, Guest J R, Chen Y P and Guisinger N P 2011 Acs. Nano 5 3607
|
[28] |
Gao L, Ren W, Zhao J, Ma L P, Chen Z and Cheng H M 2010 Appl. Phys. Lett. 97 183109
|
[29] |
Eom D, Prezzi D, Rim K T, Zhou H, Lefenfeld M, Xiao S, Nuckolls C, Hybertsen M S, Heinz T F and Flynn G W 2009 Nano Lett. 9 2844
|
[30] |
Rutter G M, Guisinger N P, Crain J N, First P N and Stroscio J A 2010 Phys. Rev. B 81 245408
|
[31] |
Cui Y, Fu Q and Bao X 2010 Phys. Chem. Chem. Phys. 12 5053
|
[32] |
Wang B, Ma X, Caffio M, Schaub R and Li W X 2011 Nano Lett. 11 424
|
[33] |
Loginova E, Bartelt N C, Feibelman P J and McCarty K F 2008 New J. Phys. 10 093206
|
[34] |
Zangwill A and Vvedensky D D 2011 Nano Lett. 11 2092
|
[35] |
Hwang C, Yoo K, Kim S J, Seo E K, Yu H and Biró L P 2011 J. Phys. Chem. C 115 22369
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|