Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(8): 087501    DOI: 10.1088/1674-1056/21/8/087501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Wiedemann effect of Fe–Ga based magnetostrictive wires

Li Ji-Heng (李纪恒), Gao Xue-Xu (高学绪), Zhu Jie (朱洁), Bao Xiao-Qian (包小倩), Cheng Liang (程亮), Xie Jian-Xin (谢建新 )
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
Abstract  (Fe83Ga17)98Cr2 wires each with a diameter of 0.7 mm are prepared by hot swaging and warm drawing from the casting rods directly, because the ductility of Fe83Ga17 alloy is improved by adding Cr element. The Wiedemann twists and dependences on magnetostrictions of Fe83Ga17 and (Fe83Ga17)98Cr2 wires are investigated. The largest observed Wiedemann twists of 245 s·cm-1 and 182 s·cm-1 are detected in the annealed Fe83Ga17 and (Fe83Ga17)98Cr2 wires, respectively. The magnetostrictions of the annealed Fe83Ga17 and (Fe83Ga17)98Cr2 wires are 160 ppm and 107 ppm, respectively. The maximum of Wiedemann twist increases with magnetostriction increasing. However the magnetostriction is just an important factor that affects the Wiedemann effect of alloy wire, and the relationship between magnetostriction and Wiedemann effect is a complex function rather than a simple function.
Keywords:  Fe-Ga alloy      wires      Wiedemann effect      magnetostriction  
Received:  04 December 2011      Revised:  31 December 2011      Accepted manuscript online: 
PACS:  75.20.En (Metals and alloys)  
  75.80.+q (Magnetomechanical effects, magnetostriction)  
  81.40.Lm (Deformation, plasticity, and creep)  
  81.40.Rs (Electrical and magnetic properties related to treatment conditions)  
Fund: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2011CB606304), the National Natural Science Foundation for Postdoctoral Scientists of China (Grant No. 2011M500229), and the Program for New Century Excellent Talents in University, China (Grant No. NCET-09-02120).
Corresponding Authors:  Gao Xue-Xu     E-mail:  gaox@skl.ustb.edu.cn

Cite this article: 

Li Ji-Heng (李纪恒), Gao Xue-Xu (高学绪), Zhu Jie (朱洁), Bao Xiao-Qian (包小倩), Cheng Liang (程亮), Xie Jian-Xin (谢建新 ) Wiedemann effect of Fe–Ga based magnetostrictive wires 2012 Chin. Phys. B 21 087501

[1] Wiedemann G 1883 Lehre von der Elektrizität 3 680
[2] Pidgeon H A 1919 Phys. Rev. 13 209
[3] Van der burgt C M 1953 Philips Res. Rep. 8 91
[4] Williams S R 1910 Magnetostrictive Effects 3 281
[5] Pidgeon H A 1918 Magneto-Striction 3 209
[6] McCorkle P 1923 Magnetostriction and Magnetoelectric Effects 271
[7] Borodin V I, Ostanin V V and Zhakov S V 1983 Phys. Met. Metall. 56 96
[8] Clark A E, in: Wohlfarth E P (ed.) 1980 Ferromagnetic Materials (Amsterdam: Worth-Holland)
[9] Cui Y T, You S Q, Wu L, Ma Y, Chen J L, Pan F S and Wu G H 2009 Acta Phys. Sin. 58 8596 (in Chinese)
[10] Tian X H, Sui J H, Zhang X, Feng X and Cai W 2011 Chin. Phys. B 20 047503
[11] Guruswamy S, Srisukhumbowornchai N, Clark A E, Restorff J B and Wun-Fogle M 2000 Scripta Mater. 43 239
[12] Li Chuan, Liu J H, Chen L B, Jiang C B and Xu H B 2011 Acta Phys. Sin. 60 097505 (in Chinese)
[13] Clark A E, Hathaway K B, Wun-Fogle M, Restorff J B, Lograsso T A, Keppens V M, Petculescu G and Taylor R A 2003 J. Appl. Phys. 93 8621
[14] Kellogg R A, Russell A M, Lograsso T A, Flatau A B, Clark A E and Wun-Fogle M 2004 Acta Mater. 52 5043
[15] Li J H, Gao X X, Xie J X, Zhu J, Bao X Q and Yu R B 2012 Physica B 407 1186
[16] Gao X X, Li J H, Zhu J, Li J and Zhang M C 2009 Mater. Trans. 50 1959
[17] Williams S R 1911 Phys. Rev. 32 281
[18] Williams S R 1912 Presented at the Cleveland Meeting of the Physical Society
[19] Liu J H, Yi F and Jiang C B 2009 J. Alloys Compd. 481 57
[20] Fromy M E 1926 J. Phys. Radium 7 13
[21] Zhakov S V, Borodin V I and Ostanin V V 1984 Phys. Met. Metall. 57 36
[22] Yamamoto M 1958 Sci. Rep. Tohoku Univ. [A] 10 219
[23] Xia T, Gao X X, Li J H and Zhang Y F 2008 J. Magn. Mater. Dev. 39 21 (in Chinese)
[24] Smith I R and Overshott K J 1965 J. Appl. Phys. 16 1247
[1] Orientation and ellipticity dependence of high-order harmonic generation in nanowires
Fan Yang(杨帆), Yinghui Zheng(郑颖辉), Luyao Zhang(张路遥), Xiaochun Ge(葛晓春), and Zhinan Zeng(曾志男). Chin. Phys. B, 2022, 31(4): 044204.
[2] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[3] Lithium ion batteries cathode material: V2O5
Baohe Yuan(袁保合), Xiang Yuan(袁祥), Binger Zhang(张冰儿), Zheng An(安政), Shijun Luo(罗世钧), and Lulu Chen(陈露露). Chin. Phys. B, 2022, 31(3): 038203.
[4] Interface modulated electron mobility enhancement in core-shell nanowires
Yan He(贺言), Hua-Kai Xu(许华慨), and Gang Ouyang(欧阳钢). Chin. Phys. B, 2022, 31(11): 110502.
[5] Molecular dynamics study of coupled layer thickness and strain rate effect on tensile behaviors of Ti/Ni multilayered nanowires
Meng-Jia Su(宿梦嘉), Qiong Deng(邓琼), Lan-Ting Liu(刘兰亭), Lian-Yang Chen(陈连阳), Meng-Long Su(宿梦龙), and Min-Rong An(安敏荣). Chin. Phys. B, 2021, 30(9): 096201.
[6] A simple method to synthesize worm-like AlN nanowires and its field emission studies
Qi Liang(梁琦), Meng-Qi Yang(杨孟骐), Chang-Hao Wang(王长昊), and Ru-Zhi Wang(王如志). Chin. Phys. B, 2021, 30(8): 087302.
[7] Magnetostriction and spin reorientation in ferromagnetic Laves phase Pr(GaxFe1-x)1.9 compounds
Min-Yu Zeng(曾敏玉), Qing Tang(唐庆), Zhi-Wei Mei(梅志巍), Cai-Yan Lu(陆彩燕), Yan-Mei Tang(唐妍梅), Xiang Li(李翔), Yun He(何云), and Ze-Ping Guo(郭泽平). Chin. Phys. B, 2021, 30(6): 067504.
[8] High-throughput identification of one-dimensional atomic wires and first principles calculations of their electronic states
Feng Lu(卢峰), Jintao Cui(崔锦韬), Pan Liu(刘盼), Meichen Lin(林玫辰), Yahui Cheng(程雅慧), Hui Liu(刘晖), Weichao Wang(王卫超), Kyeongjae Cho, and Wei-Hua Wang(王维华). Chin. Phys. B, 2021, 30(5): 057304.
[9] Conductance and dielectric properties of hydrogen and hydroxyl passivated SiCNWs
Wan-Duo Ma(马婉铎), Ya-Lin Li(李亚林), Pei Gong(龚裴), Ya-Hui Jia(贾亚辉), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(10): 107801.
[10] Exciton emissions of CdS nanowire array fabricated on Cd foil by the solvothermal method
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Ya-Juan Hao(郝亚娟), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(1): 016104.
[11] Ultra-low thermal conductivity of roughened silicon nanowires: Role of phonon-surface bond order imperfection scattering
Heng-Yu Yang(杨恒玉), Ya-Li Chen(陈亚利), Wu-Xing Zhou(周五星), Guo-Feng Xie(谢国锋), Ning Xu(徐宁). Chin. Phys. B, 2020, 29(8): 086502.
[12] Comparative study on transport properties of N-, P-, and As-doped SiC nanowires: Calculated based on first principles
Ya-Lin Li(李亚林), Pei Gong(龚裴), Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2020, 29(3): 037304.
[13] Visualization of tunnel magnetoresistance effect in single manganite nanowires
Yang Yu(郁扬), Wenjie Hu(胡雯婕), Qiang Li(李强), Qian Shi(时倩), Yinyan Zhu(朱银燕), Hanxuan Lin(林汉轩), Tian Miao(苗田), Yu Bai(白羽), Yanmei Wang(王艳梅), Wenting Yang(杨文婷), Wenbin Wang(王文彬), Hangwen Guo(郭杭闻), Lifeng Yin(殷立峰), Jian Shen(沈健). Chin. Phys. B, 2020, 29(1): 018501.
[14] Semiconductor-metal transition in GaAs nanowires under high pressure
Yi-Lan Liang(梁艺蓝), Zhen Yao(姚震), Xue-Tong Yin(殷雪彤), Peng Wang(王鹏), Li-Xia Li(李利霞), Dong Pan(潘东), Hai-Yan Li(李海燕), Quan-Jun Li(李全军), Bing-Bing Liu(刘冰冰), Jian-Hua Zhao(赵建华). Chin. Phys. B, 2019, 28(7): 076401.
[15] Optically manipulated nanomechanics of semiconductor nanowires
Chenzhi Song(宋晨之), Shize Yang(杨是赜), Xiaomin Li(李晓敏), Xiao Li(李晓), Ji Feng(冯济), Anlian Pan(潘安练), Wenlong Wang(王文龙), Zhi Xu(许智), Xuedong Bai(白雪冬). Chin. Phys. B, 2019, 28(5): 054204.
No Suggested Reading articles found!