Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(8): 087303    DOI: 10.1088/1674-1056/21/8/087303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Second-harmonic generation in asymmetric quantum dots in the presence of a static magnetic field

Li Xue-Chao (李学超), Wang An-Min (王安民), Wang Zhao-Liang (王兆亮), Yang Yang (杨阳)
Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  The second-harmonic generation (SHG) coefficient in an asymmetric quantum dot (QD) with a static magnetic field is theoretically investigated. Within the framework of the effective-mass approximation, we obtain the confined wave functions and energies of electrons in QD. We also obtain the SHG coefficient by the compact-density-matrix approach and the iterative method. The numerical results for the typical GaAs/AlGaAs QD show that the SHG coefficient depends strongly on the magnitude of magnetic field, parameters of the asymmetric potential and the radius of the QD. The resonant peak shifts with the magnetic field or the radius of the QD changing.
Keywords:  quantum dot      nonlinear optical rectification      magnetic field  
Received:  12 December 2011      Revised:  15 March 2012      Accepted manuscript online: 
PACS:  73.21.La (Quantum dots)  
  42.62.Ky  
  81.40.Rs (Electrical and magnetic properties related to treatment conditions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10975125).
Corresponding Authors:  Li Xue-Chao, Wang An-Min     E-mail:  xuechao@mail.ustc.edu.cn; anmwang@ustc.edu.cn

Cite this article: 

Li Xue-Chao (李学超), Wang An-Min (王安民), Wang Zhao-Liang (王兆亮), Yang Yang (杨阳) Second-harmonic generation in asymmetric quantum dots in the presence of a static magnetic field 2012 Chin. Phys. B 21 087303

[1] Sundaram M, Chalmers S A, Hopkins P F and Gossard A C 1991 Science 254 1326
[2] Yang W F, Song X H, Gong S G, Cheng Y and Xu Z Z 2007 Phys. Rev. Lett. 99 133602
[3] Brunhes T, Boucaud P and Sauvage S 2000 Phys. Rev. B 61 5562 [RefAutoNo] Sirtori C, Capasso F, Sivco D L and Cho A Y 1992 Phys. Rev. Lett. 68 1010
[5] Khurgin J 1988 Phys. Rev. B 38 4056
[6] Xie Y L, Chen Z H, Cui D F, Pan S H, Deng D Q, Zhou Y L, Lu H B, Huang Y, Feng S M and Yang G Z 1991 Phys. Rev. B 43 12477
[7] Sauvage S and Boucaud P 1999 Phys. Rev. B 59 9830
[8] Panish M B 1980 Science 208 916
[9] Fejer M M, Yoo S J B and Byer R L 1989 Phys. Rev. Lett. 62 1041
[10] Guo K X and Gu S W 1993 Phys. Rev. B 47 16322
[11] Tsang L, Ahn D and Chuang S L 1988 Appl. Phys. Lett. 52 697
[12] Zhang C J, Song X, Yang W and Xu Z 2008 Opt. Express 16 1487
[13] Atanasov R, Bassani F and Agranovich V M 1994 Phys. Rev. B 50 7809
[14] Li B, Guo K X, Zhang C J and Zheng Y B 2007 Phys. Lett. A 367 493
[15] Bockelmann U and Bastard G 1992 Phys. Rev. B 45 1700
[16] Zhang C J, Song X, Yang W and Xu Z 2009 J. Phys. B 42 125604
[17] Bockelmann U and Bastard G 1992 Phys. Rev. B 45 1688
[18] Zhang Z H, Guo K X, Chen B, Wang R Z and Kang M W 2009 Physica B 404 2332
[19] Troccoli M, Belyanin A, Capasso F, Kubukcu E, Sinco D J and Cho A Y 2005 Nature 433 845
[20] Atoyan M S, Kazaryan E M and Sarkisyan H A 2004 Physica E 22 860
[21] Khordad R 2010 Solid State Sci. 12 1253
[22] Zhang C J, Wang Z X, Liu Y and Guo K X 2010 Physica E 43 372
[23] Atoyan M S, Kazaryan E M and Sarkisyan H A 2006 Physica E 31 85
[24] Que W 1992 Phys. Rev. B 45 11036
[25] Rosencher E and Bois P 1991 Phys. Rev. B 44 11315
[26] Adachi S 1985 J. Appl. Phys. 58 3
[27] Guo K X and Chen C Y 1995 J. Phys.: Conden. Matter 7 6583
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[4] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[5] Quantum control of ultrafast magnetic field in H32+ molecules by tricircular polarized laser pulses
Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Zhi-Jie Yang(杨志杰), Zhi-Xian Lei(雷志仙),Shu-Juan Yan(闫淑娟), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2023, 32(3): 033202.
[6] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[7] Influence of magnetic field on power deposition in high magnetic field helicon experiment
Yan Zhou(周岩), Peiyu Ji(季佩宇), Maoyang Li(李茂洋), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(2): 025205.
[8] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[9] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[10] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[11] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[12] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[13] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[14] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[15] Coupled flow and heat transfer of power-law nanofluids on non-isothermal rough rotary disk subjected to magnetic field
Yun-Xian Pei(裴云仙), Xue-Lan Zhang(张雪岚), Lian-Cun Zheng(郑连存), and Xin-Zi Wang(王鑫子). Chin. Phys. B, 2022, 31(6): 064402.
No Suggested Reading articles found!