|
|
Predictions of pressure-induced structural transition, mechanical and thermodynamic properties of α-and β-Si3N4 ceramics: ab initio and quasi-harmonic Debye modeling |
Yu Ben-Hai(余本海) and Chen Dong(陈东)† |
College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China |
|
|
Abstract The plane-wave pseudo-potential method within the framework of ab initio technique is used to investigate the structural and elastic properties of α- and β-Si3N4. The ground-state parameters accord quite well with the experimental data. Our calculation reveals that α-Si3N4 can retain its stability to at least 40 GPa when compressed at 300 K. The α → βphase transformation would not occur in a pressure range of 0–40 GPa and a temperature range of 0–300 K. Actually, the α → βtransition occurs at 1600 K and 7.98 GPa. For α- and β-Si3N4, the c axes are slightly more incompressible than the a axes. We conclude that β-Si3N4 is a hard material and ductile in nature. On the other hand, α-Si3N4 is also found to be an ionic material and can retain its mechanical stability in a pressure range of 0–10 GPa. Besides, the thermodynamic properties such as entropy, heat capacity, and Debye temperature of α- and β-Si3N4 are determined at various temperatures and pressures. Significant features in these properties are observed at high temperature. The calculated results are in good agreement with available experimental data and previous theoretical values. Many fundamental solid-state properties are reported at high pressure and high temperature. Therefore, our results may provide useful information for theoretical and experimental investigations of the Si3N4 polymorphs.
|
Received: 24 October 2011
Revised: 03 December 2011
Accepted manuscript online:
|
PACS:
|
05.70.Fh
|
(Phase transitions: general studies)
|
|
21.60.De
|
(Ab initio methods)
|
|
62.20.dq
|
(Other elastic constants)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11105115 and 11005088) and the Project of Basic and Advanced Technology of Henan Province, China (Grant No. 112300410021). |
Corresponding Authors:
Chen Dong
E-mail: chchendong2010@163.com
|
Cite this article:
Yu Ben-Hai(余本海) and Chen Dong(陈东) Predictions of pressure-induced structural transition, mechanical and thermodynamic properties of α-and β-Si3N4 ceramics: ab initio and quasi-harmonic Debye modeling 2012 Chin. Phys. B 21 060508
|
[1] |
Yang H S, Nie A M and Qiu F M 2010 Chin. Phys. B 19 017202
|
[2] |
Xu B, Dong J, McMillan P, Shebanova O and Salamat A 2011 Phys. Rev. B 84 014113
|
[3] |
Chen J, Ouyang L Z, Rulis P, Misra A and Ching W Y 2005 Phys. Rev. Lett. 95 256103
|
[4] |
Zerr A, Miehe G, Serghiou G, Schwarz M, Kroke E, Riedel R, Fuess H, Kroll P and Boehler R 1999 Nature 400 340
|
[5] |
Wang L G, Sun J X, Yang W and Tian R G 2008 Acta Phys. Pol. A 114 807
|
[6] |
Chen L W and Chen C H 1994 Chin. Phys. Lett. 11 281
|
[7] |
Kuwabara A, Matsunaga K and Tanaka I 2008 Phys. Rev. B 78 064104
|
[8] |
Wendel J A and Goddard III W A 1992 J. Chem. Phys. 97 5048
|
[9] |
Ching W Y, Xu Y N, Gale J D and R黨le M 1998 J. Am. Ceram. Soc. 81 3189
|
[10] |
Dodd S P, Cankurtaran M, Saunders G A and James B 2001 J. Mater. Sci. 36 2557
|
[11] |
Yashima M, Ando Y and Tabira Y 2007 J. Phys. Chem. B 111 3609
|
[12] |
Chen J F, Ren Z X and Ding Z F 1995 Acta Phys. Sin. (Overseas Edn.) 4 698
|
[13] |
Zhang C, Sun J X, Tian R G and Zou S Y 2007 Acta Phys. Sin. 56 5969 (in Chinese)
|
[14] |
Danilenko N V, Oleinik G S, Dobrovol'skii V D, Britun V F and Semenenko N P 1992 Powder Metal. Met. Ceram. 31 1035
|
[15] |
Butler I S and Huang Y 1992 Appl. Spectrosc. 46 1303
|
[16] |
Togo A and Kroll P 2008 NIC Symposium 39 95
|
[17] |
Kruger M B, Nguyen J H, Li Y M, Caldwell W A, Manghnani M H and Jeanloz R 1997 Phys. Rev. B 55 3456
|
[18] |
Mirgorodsky A P, Baraton M I and Quintard P 1993 Phys. Rev. B 48 13326
|
[19] |
Mel閚dez-Martínez J J and Domínguez-Rodríguez A 2004 Prog. Mater. Sci. 49 19
|
[20] |
Bermudez V M 2005 Surf. Sci. 579 11
|
[21] |
Belkada R, Kohyama M, Shibayanagi T and Naka M 2002 Phys. Rev. B 65 092104
|
[22] |
Ching W Y, Ouyang L Z and Gale J D 2000 Phys. Rev. B 61 8696
|
[23] |
Weiss J 1981 Ann. Rev. Mater. Sci. 11 381
|
[24] |
Gr黱 R 1979 Acta Cryst. B 35 800
|
[25] |
Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
|
[26] |
Giannozzi P, Baroni S and Bonini N 2009 J. Phys.: Condens. Matter 21 395502
|
[27] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[28] |
Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
|
[29] |
Blanco M A, Francisco E and Luaňa V 2004 Comput. Phys. Commun. 158 57
|
[30] |
Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 238
|
[31] |
Marian C M, Gastreich M and Gale J D 2000 Phys. Rev. B 62 3117
|
[32] |
Hirosaki N, Ogata S, Kocer C, Kitagawa H and Nakamura Y 2002 Phys. Rev. B 65 134110
|
[33] |
Borgen O and Seip H M 1961 Acta Chem. Scand. 15 1789
|
[34] |
Priest H F, Burns F C, Priest G L and Skaar E C 1973 J. Am. Ceram. Soc. 56 395
|
[35] |
Jiang C, Lin Z and Zhao Y 2009 Phys. Rev. Lett. 103 185501
|
[36] |
Pugh S F 1954 Philos. Mag. 45 823
|
[37] |
Han I S, Seo D W, Kim S Y, Hong K S, Guahk K H and Lee K S 2008 J. Eur. Ceram. Soc. 28 1057
|
[38] |
Shein I R and Ivanovskii A I 2008 Scr. Mater. 59 1099
|
[39] |
Haines J, L間er J M and Bocquillon G 2001 Ann. Rev. Mater. Res. 31 1
|
[40] |
Wang H, Chen Y, Kaneta Y and Iwata S 2006 J. Phys.: Condens. Matter 18 10663
|
[41] |
Wang A J, Shang S L, Du Y, Kong Y, Zhang L J, Chen L, Zhao D D and Liu Z K 2010 Comput. Mater. Sci. 48 705
|
[42] |
Watari K 2001 J. Ceram. Soc. Jpn. 109 S7
|
[43] |
Vogelgesang R, Grimsditch M and Wallace J S 2000 Appl. Phys. Lett. 76 982
|
[44] |
Zerr A, Kempf M, Schwarz M, Kroke E, Göken M and Riedel R 2002 J. Am. Ceram. Soc. 85 86
|
[45] |
Shebanova O, Soignard E and Mcmillan P F 2006 High Pres. Res. 26 87
|
[46] |
Kroll P, Milko M and Anorg Z 2003 Allg. Chem. 629 1737
|
[47] |
Cartz L and Jorgensen J D 1981 J. Appl. Phys. 52 236
|
[48] |
Yeheskel O and Gefen Y 1985 Mater. Sci. Eng. 71 95
|
[49] |
Yeheskel O, Gefen Y and Talianker M 1986 Mater. Sci. Eng. 78 209
|
[50] |
Srinivasa S R, Cartz L, Jorgensen J D, Worlton T G, Beyerlein R A and Billy M 1977 J. Appl. Crystallogr. 10 167
|
[51] |
Chase M W, Davies C A, Downey J R, Frurip D J, McDonald R A and Syverad A N 1985 JANAF Thermochemical Tables (New York: American Chemical Society Press)
|
[52] |
Gurvich L V, Veyts I V and Alcock C B 1989 Thermodynamic Properties of Individual Substances (New York: Hemisphere Press)
|
[53] |
Loong C K, Vashishta P, Kalia R K and Ebbsjö I 1995 Europhys. Lett. 31 201
|
[54] |
Watari K, Seki Y and Ishizaki K 1989 J. Ceram. Soc. Jpn. Inter. Ed. 97 174
|
[55] |
Slcak G A and Huseby I C 1982 J. Appl. Phys. 53 6817
|
[56] |
Schwarz M R 2003 High Pressure Synthesis of Novel Hard Materials: Spinel-Si3N4 and Derivates (Kassel: Kassel University Press)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|