Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(6): 060508    DOI: 10.1088/1674-1056/21/6/060508
GENERAL Prev   Next  

Predictions of pressure-induced structural transition, mechanical and thermodynamic properties of α-and β-Si3N4 ceramics: ab initio and quasi-harmonic Debye modeling

Yu Ben-Hai(余本海) and Chen Dong(陈东)
College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China
Abstract  The plane-wave pseudo-potential method within the framework of ab initio technique is used to investigate the structural and elastic properties of α- and β-Si3N4. The ground-state parameters accord quite well with the experimental data. Our calculation reveals that α-Si3N4 can retain its stability to at least 40 GPa when compressed at 300 K. The α → βphase transformation would not occur in a pressure range of 0–40 GPa and a temperature range of 0–300 K. Actually, the α → βtransition occurs at 1600 K and 7.98 GPa. For α- and β-Si3N4, the c axes are slightly more incompressible than the a axes. We conclude that β-Si3N4 is a hard material and ductile in nature. On the other hand, α-Si3N4 is also found to be an ionic material and can retain its mechanical stability in a pressure range of 0–10 GPa. Besides, the thermodynamic properties such as entropy, heat capacity, and Debye temperature of α- and β-Si3N4 are determined at various temperatures and pressures. Significant features in these properties are observed at high temperature. The calculated results are in good agreement with available experimental data and previous theoretical values. Many fundamental solid-state properties are reported at high pressure and high temperature. Therefore, our results may provide useful information for theoretical and experimental investigations of the Si3N4 polymorphs.
Keywords:  ab initio      elastic constants      phase transition      Poisson ratio  
Received:  24 October 2011      Revised:  03 December 2011      Accepted manuscript online: 
PACS:  05.70.Fh (Phase transitions: general studies)  
  21.60.De (Ab initio methods)  
  62.20.dq (Other elastic constants)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11105115 and 11005088) and the Project of Basic and Advanced Technology of Henan Province, China (Grant No. 112300410021).
Corresponding Authors:  Chen Dong     E-mail:  chchendong2010@163.com

Cite this article: 

Yu Ben-Hai(余本海) and Chen Dong(陈东) Predictions of pressure-induced structural transition, mechanical and thermodynamic properties of α-and β-Si3N4 ceramics: ab initio and quasi-harmonic Debye modeling 2012 Chin. Phys. B 21 060508

[1] Yang H S, Nie A M and Qiu F M 2010 Chin. Phys. B 19 017202
[2] Xu B, Dong J, McMillan P, Shebanova O and Salamat A 2011 Phys. Rev. B 84 014113
[3] Chen J, Ouyang L Z, Rulis P, Misra A and Ching W Y 2005 Phys. Rev. Lett. 95 256103
[4] Zerr A, Miehe G, Serghiou G, Schwarz M, Kroke E, Riedel R, Fuess H, Kroll P and Boehler R 1999 Nature 400 340
[5] Wang L G, Sun J X, Yang W and Tian R G 2008 Acta Phys. Pol. A 114 807
[6] Chen L W and Chen C H 1994 Chin. Phys. Lett. 11 281
[7] Kuwabara A, Matsunaga K and Tanaka I 2008 Phys. Rev. B 78 064104
[8] Wendel J A and Goddard III W A 1992 J. Chem. Phys. 97 5048
[9] Ching W Y, Xu Y N, Gale J D and R黨le M 1998 J. Am. Ceram. Soc. 81 3189
[10] Dodd S P, Cankurtaran M, Saunders G A and James B 2001 J. Mater. Sci. 36 2557
[11] Yashima M, Ando Y and Tabira Y 2007 J. Phys. Chem. B 111 3609
[12] Chen J F, Ren Z X and Ding Z F 1995 Acta Phys. Sin. (Overseas Edn.) 4 698
[13] Zhang C, Sun J X, Tian R G and Zou S Y 2007 Acta Phys. Sin. 56 5969 (in Chinese)
[14] Danilenko N V, Oleinik G S, Dobrovol'skii V D, Britun V F and Semenenko N P 1992 Powder Metal. Met. Ceram. 31 1035
[15] Butler I S and Huang Y 1992 Appl. Spectrosc. 46 1303
[16] Togo A and Kroll P 2008 NIC Symposium 39 95
[17] Kruger M B, Nguyen J H, Li Y M, Caldwell W A, Manghnani M H and Jeanloz R 1997 Phys. Rev. B 55 3456
[18] Mirgorodsky A P, Baraton M I and Quintard P 1993 Phys. Rev. B 48 13326
[19] Mel閚dez-Martínez J J and Domínguez-Rodríguez A 2004 Prog. Mater. Sci. 49 19
[20] Bermudez V M 2005 Surf. Sci. 579 11
[21] Belkada R, Kohyama M, Shibayanagi T and Naka M 2002 Phys. Rev. B 65 092104
[22] Ching W Y, Ouyang L Z and Gale J D 2000 Phys. Rev. B 61 8696
[23] Weiss J 1981 Ann. Rev. Mater. Sci. 11 381
[24] Gr黱 R 1979 Acta Cryst. B 35 800
[25] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[26] Giannozzi P, Baroni S and Bonini N 2009 J. Phys.: Condens. Matter 21 395502
[27] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[28] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[29] Blanco M A, Francisco E and Luaňa V 2004 Comput. Phys. Commun. 158 57
[30] Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 238
[31] Marian C M, Gastreich M and Gale J D 2000 Phys. Rev. B 62 3117
[32] Hirosaki N, Ogata S, Kocer C, Kitagawa H and Nakamura Y 2002 Phys. Rev. B 65 134110
[33] Borgen O and Seip H M 1961 Acta Chem. Scand. 15 1789
[34] Priest H F, Burns F C, Priest G L and Skaar E C 1973 J. Am. Ceram. Soc. 56 395
[35] Jiang C, Lin Z and Zhao Y 2009 Phys. Rev. Lett. 103 185501
[36] Pugh S F 1954 Philos. Mag. 45 823
[37] Han I S, Seo D W, Kim S Y, Hong K S, Guahk K H and Lee K S 2008 J. Eur. Ceram. Soc. 28 1057
[38] Shein I R and Ivanovskii A I 2008 Scr. Mater. 59 1099
[39] Haines J, L間er J M and Bocquillon G 2001 Ann. Rev. Mater. Res. 31 1
[40] Wang H, Chen Y, Kaneta Y and Iwata S 2006 J. Phys.: Condens. Matter 18 10663
[41] Wang A J, Shang S L, Du Y, Kong Y, Zhang L J, Chen L, Zhao D D and Liu Z K 2010 Comput. Mater. Sci. 48 705
[42] Watari K 2001 J. Ceram. Soc. Jpn. 109 S7
[43] Vogelgesang R, Grimsditch M and Wallace J S 2000 Appl. Phys. Lett. 76 982
[44] Zerr A, Kempf M, Schwarz M, Kroke E, Göken M and Riedel R 2002 J. Am. Ceram. Soc. 85 86
[45] Shebanova O, Soignard E and Mcmillan P F 2006 High Pres. Res. 26 87
[46] Kroll P, Milko M and Anorg Z 2003 Allg. Chem. 629 1737
[47] Cartz L and Jorgensen J D 1981 J. Appl. Phys. 52 236
[48] Yeheskel O and Gefen Y 1985 Mater. Sci. Eng. 71 95
[49] Yeheskel O, Gefen Y and Talianker M 1986 Mater. Sci. Eng. 78 209
[50] Srinivasa S R, Cartz L, Jorgensen J D, Worlton T G, Beyerlein R A and Billy M 1977 J. Appl. Crystallogr. 10 167
[51] Chase M W, Davies C A, Downey J R, Frurip D J, McDonald R A and Syverad A N 1985 JANAF Thermochemical Tables (New York: American Chemical Society Press)
[52] Gurvich L V, Veyts I V and Alcock C B 1989 Thermodynamic Properties of Individual Substances (New York: Hemisphere Press)
[53] Loong C K, Vashishta P, Kalia R K and Ebbsjö I 1995 Europhys. Lett. 31 201
[54] Watari K, Seki Y and Ishizaki K 1989 J. Ceram. Soc. Jpn. Inter. Ed. 97 174
[55] Slcak G A and Huseby I C 1982 J. Appl. Phys. 53 6817
[56] Schwarz M R 2003 High Pressure Synthesis of Novel Hard Materials: Spinel-Si3N4 and Derivates (Kassel: Kassel University Press)
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[4] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[5] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[6] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[7] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[8] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[9] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[10] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[11] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[12] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[13] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[14] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[15] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
No Suggested Reading articles found!