Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(6): 060507    DOI: 10.1088/1674-1056/21/6/060507
GENERAL Prev   Next  

Adaptive H synchronization of chaotic systems via linear and nonlinear feedback control

Fu Shi-Hui(付士慧)a)†, Lu Qi-Shao(陆启韶)b), and Du Ying(杜莹)c)
a. Department of Mathematics, Zhengzhou University, Zhengzhou 450001, China;
b. School of Aeronautics Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China;
c. School of Science, East China University of Science and Technology, Shanghai 200237, China
Abstract  Adaptive H synchronization of chaotic systems via linear and nonlinear feedback control is investigated. The chaotic systems are redesigned by using the generalized Hamiltonian systems and observer approach. Based on Lyapunov's stability theory, linear and nonlinear feedback control of adaptive H synchronization is established in order to not only guarantee stable synchronization of both master and slave systems but also reduce the effect of external disturbance on an H-norm constraint. Adaptive H synchronization of chaotic systems via three kinds of control is investigated with applications to Lorenz and Chen systems. Numerical simulations are also given to identify the effectiveness of the theoretical analysis.
Keywords:  chaotic system      H synchronization      generalized Hamiltonian system      Lyapunov's stability theory      adaptive synchronization      Lorenz system      Chen system  
Received:  16 January 2012      Revised:  17 February 2012      Accepted manuscript online: 
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.-a (Nonlinear dynamics and chaos)  
Corresponding Authors:  Fu Shi-Hui     E-mail:  fshtp@163.om

Cite this article: 

Fu Shi-Hui(付士慧), Lu Qi-Shao(陆启韶), and Du Ying(杜莹) Adaptive H synchronization of chaotic systems via linear and nonlinear feedback control 2012 Chin. Phys. B 21 060507

[1] Chen G and Dong X 1993 IEEE Trans. Circ. Syst. 40 591
[2] Liao T L and Huang N S 1999 IEEE Trans. Circ. Syst. 46 1144
[3] Solak E 2004 Phys. Lett. A 325 276
[4] Abdurahman K, Wang X Y and Zhao Y Z 2011 Acta Phys. Sin. 60 110510 (in Chinese)
[5] Liu F C, Li J Y and Zang X F 2011 Acta Phys. Sin. 60 030504 (in Chinese)
[6] Wu Y F, Zhang S P, Sun J W, Peter R and Li Z 2011 Acta Phys. Sin. 60 100509 (in Chinese)
[7] Fu J, Yu M and Ma T D 2011 Acta Phys. Sin. 60 120508 (in Chinese)
[8] Li H Q, Liao X F and Huang H Y 2011 Acta Phys. Sin. 60 020512 (in Chinese)
[9] Hou Y Y, Liao T L and Yan J J 2007 Physica A 379 81
[10] Tseng C C and Chen B S 2001 IEEE Trans. Fuzzy Syst. 9 795
[11] Zhang L, Huang B and Lam J 2003 IEEE Trans. Circ. Syst. 50 615
[12] Lee S M, Ji D H, Park H and Won S C 2008 Phys. Lett. A 372 4905
[13] Hu J and Zhang Q J 2008 Chin. Phys. B 17 503
[14] Ahn C K, Jung S T, Kang S K and Joo S C 2010 Commun. Nonlinear Sci. Numer. Simul. 15 2168
[15] Hebertt S R and Ce'saf C H 2001 Int. J. Bifur. Chaos 11 1381
[16] G醡ez-Guzm醤 L, Cruz-Hern醤dez C, L髉ez-Guti閞rez R M and García-Guerrero E E 2009 Commun. Nonlinear Sci. Numer. Simul. 14 2765
[17] Mu X W and Pei L J 2010 Appl. Math. Modelling 34 1788
[18] Wang X Y and Song J M 2009 Commun. Nonlinear Sci. Numer. Simul. 14 3351
[19] Tao C H 2006 Phys. Lett. A 348 201
[20] Yang C C 2011 Appl. Math. Comput. 217 6490
[21] Yahyazadeh M, Noei A R and Ghaderi R 2011 ISA Transactions 50 262
[22] Gahinet P, Nemirovski A, Laub A J and Chilali M 1995 The Mathworks Inc.
[23] Wang J W, Xionga X H and Zhang Y B 2006 Physica A 370 279
[24] Wang Y W, Guan Z H and Wang H O 2003 Phys. Lett. A 312 34
[25] Wang Y W, Guan Z H and Wang H O 2003 Phys. Lett. A 320 154
[26] Asheghan M M, Hamidi B M T and Tavazoei M S 2011 Commun. Nonlinear Sci. Numer. Simul. 16 1044
[1] Data encryption based on a 9D complex chaotic system with quaternion for smart grid
Fangfang Zhang(张芳芳), Zhe Huang(黄哲), Lei Kou(寇磊), Yang Li(李扬), Maoyong Cao(曹茂永), and Fengying Ma(马凤英). Chin. Phys. B, 2023, 32(1): 010502.
[2] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[3] Solutions and memory effect of fractional-order chaotic system: A review
Shaobo He(贺少波), Huihai Wang(王会海), and Kehui Sun(孙克辉). Chin. Phys. B, 2022, 31(6): 060501.
[4] The transition from conservative to dissipative flows in class-B laser model with fold-Hopf bifurcation and coexisting attractors
Yue Li(李月), Zengqiang Chen(陈增强), Mingfeng Yuan(袁明峰), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(6): 060503.
[5] Neural-mechanism-driven image block encryption algorithm incorporating a hyperchaotic system and cloud model
Peng-Fei Fang(方鹏飞), Han Liu(刘涵), Cheng-Mao Wu(吴成茂), and Min Liu(刘旻). Chin. Phys. B, 2022, 31(4): 040501.
[6] Color-image encryption scheme based on channel fusion and spherical diffraction
Jun Wang(王君), Yuan-Xi Zhang(张沅熙), Fan Wang(王凡), Ren-Jie Ni(倪仁杰), and Yu-Heng Hu(胡玉衡). Chin. Phys. B, 2022, 31(3): 034205.
[7] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[8] Acoustic wireless communication based on parameter modulation and complex Lorenz chaotic systems with complex parameters and parametric attractors
Fang-Fang Zhang(张芳芳), Rui Gao(高瑞), and Jian Liu(刘坚). Chin. Phys. B, 2021, 30(8): 080503.
[9] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[10] Energy behavior of Boris algorithm
Abdullah Zafar and Majid Khan. Chin. Phys. B, 2021, 30(5): 055203.
[11] Adaptive synchronization of a class of fractional-order complex-valued chaotic neural network with time-delay
Mei Li(李梅), Ruo-Xun Zhang(张若洵), and Shi-Ping Yang(杨世平). Chin. Phys. B, 2021, 30(12): 120503.
[12] Cascade discrete memristive maps for enhancing chaos
Fang Yuan(袁方), Cheng-Jun Bai(柏承君), and Yu-Xia Li(李玉霞). Chin. Phys. B, 2021, 30(12): 120514.
[13] Dynamical analysis, circuit realization, and application in pseudorandom number generators of a fractional-order laser chaotic system
Chenguang Ma(马晨光), Santo Banerjee, Li Xiong(熊丽), Tianming Liu(刘天明), Xintong Han(韩昕彤), and Jun Mou(牟俊). Chin. Phys. B, 2021, 30(12): 120504.
[14] Adaptive synchronization of chaotic systems with less measurement and actuation
Shun-Jie Li(李顺杰), Ya-Wen Wu(吴雅文), and Gang Zheng(郑刚). Chin. Phys. B, 2021, 30(10): 100503.
[15] Design and multistability analysis of five-value memristor-based chaotic system with hidden attractors
Li-Lian Huang(黄丽莲), Shuai Liu(刘帅), Jian-Hong Xiang(项建弘), and Lin-Yu Wang(王霖郁). Chin. Phys. B, 2021, 30(10): 100506.
No Suggested Reading articles found!