Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(5): 058504    DOI: 10.1088/1674-1056/21/5/058504
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Performance improvement of InGaN blue light-emitting diodes with several kinds of electron-blocking layers

Chen Jun(陈峻)a)b), Fan Guang-Han(范广涵)a)†, Zhang Yun-Yan(张运炎)c), Pang Wei(庞玮)b), Zheng Shu-Wen(郑树文)a), and Yao Guang-Rui(姚光锐)a)
a. Institute of Opto-Electronic Materials and Technology, South China Normal University, Guangzhou 510631, China;
b. Experimental Teaching Center, Guangdong University of Technology, Guangzhou 510006, China;
c. Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
Abstract  The performance of InGaN blue light-emitting diodes (LEDs) with different kinds of electron-blocking layers is investigated numerically. We compare the simulated emission spectra, electron and hole concentrations, energy band diagrams, electrostatic fields, and internal quantum efficiencies of the LEDs. The LED using AlGaN with gradually increasing Al content from 0% to 20% as the electron-blocking layer (EBL) has a strong spectrum intensity, mitigates efficiency droop, and possesses higher output power compared with the LEDs with the other three types of EBLs. These advantages could be because of the lower electron leakage current and more effective hole injection. The optical performance of the specifically designed LED is also improved in the case of large injection current.
Keywords:  electron-blocking layer      light-emitting diode      internal quantum efficiency  
Received:  14 August 2011      Revised:  27 April 2012      Accepted manuscript online: 
PACS:  85.60.Jb (Light-emitting devices)  
  85.50.-n (Dielectric, ferroelectric, and piezoelectric devices)  
  87.15.A- (Theory, modeling, and computer simulation)  
  78.60.Fi (Electroluminescence)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61176043), the Fund for Strategic and Emerging Industries of Guangdong Province, China (Grant No. 2010A081002005), and the Project of Combination of Production and Research of the Education Ministry and Guangdong Province, China (Grant No. 2010B090400192).

Cite this article: 

Chen Jun(陈峻), Fan Guang-Han(范广涵), Zhang Yun-Yan(张运炎), Pang Wei(庞玮), Zheng Shu-Wen(郑树文), and Yao Guang-Rui(姚光锐) Performance improvement of InGaN blue light-emitting diodes with several kinds of electron-blocking layers 2012 Chin. Phys. B 21 058504

[1] Bergh A, Craford G, Duggal A and Haitz R 2001 Phys. Today 5544 42
[2] Mathew C, Schmid T, Kim K C, Hitoshi S, Natalie F, Hisashi M, Shuji N, Steven P D and James S S 2007 Jpn. J. Appl. Phys. 46 L126
[3] Chen G, Craven M, Kim A, Munkholm A, Watanabe S, Camras M, Götz W and Steranka F 2008 Phys. Status Solidi A 205 1086
[4] Li Y L, Huang Y R and Lai Y H 2007 Appl. Phys. Lett. 91 181113
[5] Kim M H, Schubert M F, Dai Q, Kim J K, Schubert E F, Piprek J and Park Y 2007 Appl. Phys. Lett. 91 183507
[6] Schubert M F, Xu J, Kim J K, Schubert E F, Kim M H, Yoon S, Lee S M, Sone C, Sakong T and Park Y 2008 Appl. Phys. Lett. 93 041102
[7] David A, Grundmann M J, Kaeding J F, Gardner N F, Mihopoulos T G, Krames M R, Mihopoulos T G and Krames M R 2008 Appl. Phys. Lett. 92 053502
[8] Chen Y X, Shen G D, Han J R, Li J J and Guo W L 2010 Acta Phys. Sin. 59 545 (in Chinese)
[9] Xing Y H, Han J, Deng J, Li J J, Xu C and Shen G D 2010 Acta Phys. Sin. 59 1233 (in Chinese)
[10] Zhang Y Y and Fan G H 2011 Chin. Phys. B 20 048502
[11] Efremov A A, Bochkareva N I, Gorbunov R I, Larinovich D A, Rebane Y T, Tarkhin D V and Shreter Y G 2006 Semiconductors 40 605
[12] Shen Y C, M黮ler G O, Watanabe S, Gardner N F, Munkholm A and Krames M R 2007 Appl. Phys. Lett. 91 141101
[13] Gardner N F, M黮ler G O, Shen Y C, Chen G, Watanabe S, Götz W and Krames M R 2007 Appl. Phys. Lett. 91 243506
[14] Kim A Y, Götz W, Steigerwald D A, Wierer J J, Gardner N F, Sun J, Stockman S A, Martin P S, Krames M R, Kern R S and Steranka F M 2001 Phys. Status Solidi A 188 15
[15] Chichibu S F, Azuhata T, Sugiyama M, Kitamura T, Ishida Y, Okumurac H, Nakanishi H, Sota T and Mukai T 2001 J. Vac. Sci. Technol. B 19 2177
[16] Xie J, Ni X, Fan Q, Shimada R, Ozgur U and Morkoc H 2008 Appl. Phys. Lett. 93 121107
[17] Pope I A, Smowton P M, Blood P, Thomson J D, Kappers M J and Humphreys C J 2003 Appl. Phys. Lett. 82 2755
[18] Wang B, Li Z, Yao R, Liang M, Yan F W and Wang G H 2011 Acta Phys. Sin. 60 016108 (in Chinese)
[19] Chen H, Ding G J, Guo L W, Jia H Q, Liu J, Liu X Y, Lv L, Tan C L, Xing Z G, Zhou J M and Zhou Z T 2007 Acta Phys. Sin. 56 6013 (in Chinese)
[20] Zhao D G, Zhou M and Zuo S H 2007 Acta Phys. Sin. 56 5513 (in Chinese)
[21] Duan H T, Hao Y, Xu Z H, Zhang J C, Zhang Z F and Zhu Q W 2009 Chin. Phys. B 18 5457
[22] Chen J F and Hao Y 2009 Chin. Phys. B 18 5451
[23] Liu N X, Wang H B, Liu J P, Niu N H, Han J and Shen G D 2006 Acta Phys. Sin. 55 1424 (in Chinese)
[24] Cao Z Y, Cu W P, Hao Y, Li P X and Zhang J C 2009 Chin. Phys. B 18 4970
[25] Chen G F, Jiang D S, Liu Z S, Wang H, Wang Y T, Wu Y X, Yang H, Zhang S M, Zhao D C and Zhu J 2009 Chin. Phys. B 18 4413
[26] Feng Q, Hao Y and Wang F X 2004 Acta Phys. Sin. 53 3587 (in Chinese)
[27] Lee J, Li X, Ni X, özg黵 U, Morkoç H, Paskova T, Mulholland G and Evans K R 2009 Appl. Phys. Lett. 95 201113
[28] APSYS by Crosslight Software Inc. (http://www.crosslight.com)
[29] Kuo Y K, Chang J Y, Tsai M C and Yen S H 2009 Appl. Phys. Lett. 95 011116
[30] Piprek J and Nakamura S 2002 IEEE Proc. J. Optoelectron. 149 145
[31] Vurgaftman I and Meyer J R 2003 J. Appl. Phys. 94 3675
[32] Kuo Y K, Wang T H, Chang J Y and Tsai M C 2011 Appl. Phys. Lett. 99 091107
[1] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[2] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[3] Large-area fabrication: The next target of perovskite light-emitting diodes
Hang Su(苏杭), Kun Zhu(朱坤), Jing Qin(钦敬), Mengyao Li(李梦瑶), Yulin Zuo(左郁琳), Yunzheng Wang(王允正), Yinggang Wu(吴迎港), Jiawei Cao(曹佳维), and Guolong Li(李国龙). Chin. Phys. B, 2021, 30(8): 088502.
[4] Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content
Rui Li(李睿), Ming-Sheng Xu(徐明升), Peng Wang(汪鹏), Cheng-Xin Wang(王成新), Shang-Da Qu(屈尚达), Kai-Ju Shi(时凯居), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2021, 30(4): 047801.
[5] Optical polarization characteristics for AlGaN-based light-emitting diodes with AlGaN multilayer structure as well layer
Lu Xue(薛露), Yi Li(李毅), Mei Ge(葛梅), Mei-Yu Wang(王美玉), and You-Hua Zhu(朱友华). Chin. Phys. B, 2021, 30(4): 047802.
[6] Theoretical verification of intermolecular hydrogen bond induced thermally activated delayed fluorescence in SOBF-Ome
Mu-Zhen Li(李慕臻), Fei-Yan Li(李飞雁), Qun Zhang(张群), Kai Zhang(张凯), Yu-Zhi Song(宋玉志), Jian-Zhong Fan(范建忠), Chuan-Kui Wang(王传奎), and Li-Li Lin(蔺丽丽). Chin. Phys. B, 2021, 30(12): 123302.
[7] Dependence of limited radiative recombination rate of InGaN-based light-emitting diode on lattice temperature with high injection
Jiang-Dong Gao(高江东), Jian-Li Zhang(张建立), Zhi-Jue Quan(全知觉), Jun-Lin Liu(刘军林), Feng-Yi Jiang(江风益). Chin. Phys. B, 2020, 29(4): 047802.
[8] Reliability of organic light-emitting diodes in low-temperature environment
Saihu Pan(潘赛虎), Zhiqiang Zhu(朱志强), Kangping Liu(刘康平), Hang Yu(于航), Yingjie Liao(廖英杰), Bin Wei(魏斌), Redouane Borsali, and Kunping Guo(郭坤平). Chin. Phys. B, 2020, 29(12): 128503.
[9] Tetraalkyl-substituted zinc phthalocyanines used as anode buffer layers for organic light-emitting diodes
Qian Chen(陈潜), Songhe Yang(杨松鹤), Lei Dong(董磊), Siyuan Cai(蔡思源), Jiaju Xu(许家驹), Zongxiang Xu(许宗祥). Chin. Phys. B, 2020, 29(1): 017302.
[10] Infrared light-emitting diodes based on colloidal PbSe/PbS core/shell nanocrystals
Byung-Ryool Hyun, Mikita Marus, Huaying Zhong(钟华英), Depeng Li(李德鹏), Haochen Liu(刘皓宸), Yue Xie(谢阅), Weon-kyu Koh, Bing Xu(徐冰), Yanjun Liu(刘言军), Xiao Wei Sun(孙小卫). Chin. Phys. B, 2020, 29(1): 018503.
[11] Monolithic semi-polar (1101) InGaN/GaN near white light-emitting diodes on micro-striped Si (100) substrate
Qi Wang(王琦), Guo-Dong Yuan(袁国栋), Wen-Qiang Liu(刘文强), Shuai Zhao(赵帅), Lu Zhang(张璐), Zhi-Qiang Liu(刘志强), Jun-Xi Wang(王军喜), Jin-Min Li(李晋闽). Chin. Phys. B, 2019, 28(8): 087802.
[12] Enhanced performance of AlGaN-based ultraviolet light-emitting diodes with linearly graded AlGaN inserting layer in electron blocking layer
Guang Li(李光), Lin-Yuan Wang(王林媛), Wei-Dong Song(宋伟东), Jian Jiang(姜健), Xing-Jun Luo(罗幸君), Jia-Qi Guo(郭佳琦), Long-Fei He(贺龙飞), Kang Zhang(张康), Qi-Bao Wu(吴启保), Shu-Ti Li(李述体). Chin. Phys. B, 2019, 28(5): 058502.
[13] Double superlattice structure for improving the performance of ultraviolet light-emitting diodes
Yan-Li Wang(王燕丽), Pei-Xian Li(李培咸), Sheng-Rui Xu(许晟瑞), Xiao-Wei Zhou(周小伟), Xin-Yu Zhang(张心禹), Si-Yu Jiang(姜思宇), Ru-Xue Huang(黄茹雪), Yang Liu(刘洋), Ya-Li Zi(訾亚丽), Jin-Xing Wu(吴金星), Yue Hao(郝跃). Chin. Phys. B, 2019, 28(3): 038502.
[14] InP quantum dots-based electroluminescent devices
Qianqian Wu(吴倩倩), Fan Cao(曹璠), Lingmei Kong(孔令媚), Xuyong Yang(杨绪勇). Chin. Phys. B, 2019, 28(11): 118103.
[15] Optoelectronic properties analysis of silicon light-emitting diode monolithically integrated in standard CMOS IC
Yanxu Chen(陈彦旭), Dongliang Xu(许栋梁), Kaikai Xu(徐开凯), Ning Zhang(张宁), Siyang Liu(刘斯扬), Jianming Zhao(赵建明), Qian Luo(罗谦), Lukas W. Snyman, Jacobus W. Swart. Chin. Phys. B, 2019, 28(10): 107801.
No Suggested Reading articles found!