Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(5): 057802    DOI: 10.1088/1674-1056/21/5/057802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electric potential distribution near nanocone arrays on metal substrates

Huang Xiao-Jing(黄晓菁) and You Rong-Yi(游荣义)
Department of Physics, School of Science, Jimei University, Xiamen 361021, China
Abstract  Based on the nanostructured surface model, where conical nanoparticle arrays grow out symmetrically from a plane metal substrate, a theoretical model of the local electric potential near nanocones is built when a uniform external electric field is applied. In terms of this model, the electric potential distribution near the nanocone arrays is obtained and given by a curved surface using a numerical computation method. The computational results show that the electric potential distribution near the nanocone arrays exhibit an obvious geometrical symmetry. These results could serve as a basis for explaining many abnormal phenomena, such as the abnormal infrared effects (AIREs) which are found on nanostructured metal surfaces, as well as a reference for investigating the applications of nanomaterials, such as nanoelectrodes and nanosensors.
Keywords:  nanocone arrays      nanostructured metal surface      electric potential distribution  
Received:  17 November 2011      Revised:  27 April 2012      Accepted manuscript online: 
PACS:  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  82.45.Yz (Nanostructured materials in electrochemistry)  
  61.46.-w (Structure of nanoscale materials)  
Fund: Project supported by the Natural Science Foundation of Fujian Province, China (Grant Nos. 2010J01210, B509043A, and 2011J05006).

Cite this article: 

Huang Xiao-Jing(黄晓菁) and You Rong-Yi(游荣义) Electric potential distribution near nanocone arrays on metal substrates 2012 Chin. Phys. B 21 057802

[1] Wang Q Q and Zhao T Y 1999 Acta Phys. Sin. 48 539 (in Chinese)
[2] Kim S W and Kim S 2001 Phys. Rev. B 63 212301
[3] Chen W, Sun S G, Zhou Z Y and Chen S P 2003 J. Phys. Chem. B 107 9808
[4] Pinchuk A, Kreibig U and Hilger A 2004 Surf. Sci. 557 269
[5] Lin W G, Sun S G, Zhou Z Y, Chen S P and Wang H C 2002 J. Phys. Chem. B 106 11778
[6] Huang X J, He S Z and Wu C X 2006 Chin. Phys. 15 2389
[7] Crljen Z and Langreth D C 1987 Phys. Rev. B 35 4224
[8] Huang X J, Wu C X, Chen Y J, Lin H, Jiang D H and Sun S G 2005 Acta Phys. Sin. 54 429 (in Chinese)
[9] Zhu B H, Wang F F, Zhang K, Ma G H, Guo L J and Qian S X 2007 Acta Phys. Sin. 56 4024 (in Chinese)
[10] Fu J X, Hua Y L,Chen Y H, Liu R J, Li J F and Li Z Y 2011 Chin. Phys. B 20 037806
[11] Kim J H, Kang G, Nam Y and Choi Y K 2010 Nanotechnology 21 085303
[12] Ioroi T, Yasuda K, Siroma Z, Fujiwara N and Miyazaki Y 2002 J. Power Source 112 583
[13] Lindström R W, Seidel Y E, Jusys Z, Gustavsson M, Wickman B, Kasemo B and Behm R J 2010 J. Electroanal. Chem. 664 90
[14] Niu Z Q, Ma W J, Dong H B, Li J Z and Zhou W Y 2011 Chin. Phys. B 20 028101
[15] Xu J, Lee S H, Bell Zane W, Smith B, Zhang X G, Ju Tong, Chen A J and Pan Z W 2010 Proc. SPIE Int. Soc. Opt. Eng. 7805 78050Z
[16] Machado M, Piquini P and Mota R 2005 Nanotechnology 16 302
[1] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[2] Asymmetrical photonic spin Hall effect based on dielectric metasurfaces
Guangzhou Geng(耿广州), Ruhao Pan(潘如豪), Wei Zhu(朱维), and Junjie Li(李俊杰). Chin. Phys. B, 2022, 31(12): 124207.
[3] A novel natural surface-enhanced fluorescence system based on reed leaf as substrate for crystal violet trace detection
Hui-Ju Cao(曹会菊), Hong-Wen Cao(曹红文), Yue Li(李月), Zhen Sun(孙祯), Yun-Fan Yang(杨云帆), Ti-Feng Jiao(焦体峰), and Ming-Li Wang(王明利). Chin. Phys. B, 2022, 31(10): 107801.
[4] In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction
Ruijie Wang(王瑞洁), Qilong Cui(崔其龙), Wen Zhu(朱文), Yijie Niu(牛艺杰), Zhanfeng Liu(刘站锋), Lei Zhang(张雷), Xiaojun Wu(武晓君), Shuangming Chen(陈双明), and Li Song(宋礼). Chin. Phys. B, 2022, 31(9): 096802.
[5] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[6] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[7] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[8] Anisotropic refraction and valley-spin-dependent anomalous Klein tunneling in a 1T'-MoS2-based p-n junction
Fenghua Qi(戚凤华) and Xingfei Zhou(周兴飞). Chin. Phys. B, 2022, 31(7): 077301.
[9] Light-modulated electron retroreflection and Klein tunneling in a graphene-based n-p-n junction
Xingfei Zhou(周兴飞), Ziying Wu(吴子瀛), Yuchen Bai(白宇晨), Qicheng Wang(王起程), Zhentao Zhu(朱震涛), Wei Yan(闫巍), and Yafang Xu(许亚芳). Chin. Phys. B, 2022, 31(4): 047301.
[10] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[11] Surface-enhanced fluorescence and application study based on Ag-wheat leaves
Hongwen Cao(曹红文), Liting Guo(郭立婷), Zhen Sun(孙祯), Tifeng Jiao(焦体峰), and Mingli Wang(王明利). Chin. Phys. B, 2022, 31(3): 037803.
[12] Lattice plasmon mode excitation via near-field coupling
Yun Lin(林蕴), Shuo Shen(申烁), Xiang Gao(高祥), and Liancheng Wang(汪炼成). Chin. Phys. B, 2022, 31(1): 014214.
[13] Quality factor enhancement of plasmonic surface lattice resonance by using asymmetric periods
Yunjie Shi(石云杰), Lei Xiong(熊磊), Yuming Dong(董玉明), Degui Sun(孙德贵), and Guangyuan Li(李光元). Chin. Phys. B, 2022, 31(1): 014217.
[14] Light focusing in linear arranged symmetric nanoparticle trimer on metal film system
Yuxia Tang(唐裕霞), Shuxia Wang(王蜀霞), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2022, 31(1): 017303.
[15] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
No Suggested Reading articles found!