Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(2): 027102    DOI: 10.1088/1674-1056/21/2/027102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic properties of graphene nanoribbon doped by boron/nitrogen pair: a first-principles study

Xiao Jin(肖金)a), Yang Zhi-Xiong(杨志雄)a), Xie Wei-Tao(谢伟涛)a), Xiao Li-Xin(肖立新)b), Xu Hui(徐慧)a)†, and OuYang Fang-Ping(欧阳方平)a)c)‡
a. School of Physics Science and Technology, Central South University, Changsha 410083, China;
b. School of Physics and State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Peking University, Beijing 100871, China;
c. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
Abstract  By using the first-principles calculations, the electronic properties of graphene nanoribbon (GNR) doped by boron/nitrogen (B/N) bonded pair are investigated. It is found that B/N bonded pair tends to be doped at the edges of GNR and B/N pair doping in GNR is easier to carry out than single B doping and unbonded B/N co-doping in GNR. The electronic structure of GNR doped by B/N pair is very sensitive to doping site besides the ribbon width and chirality. Moreover, B/N pair doping can selectively adjust the energy gap of armchair GNR and can induce the semimetal-semiconductor transmission for zigzag GNR. This fact may lead to a possible method for energy band engineering of GNRs and benefit the design of graphene electronic device.
Keywords:  graphene nanoribbons      boron/nitrogen pairs doping      electronic properties      first-principles  
Received:  01 July 2011      Revised:  17 September 2011      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.Tx (Fullerenes and related materials; intercalation compounds)  
  71.55.-i (Impurity and defect levels)  
Fund: Project supported by the Science and Technology Program of Hunan Province, China (Grant No. 2010DFJ411), the Natural Science Foundation of Hunan Province, China (Grant No. 11JJ4001), and the Fundamental Research Funds for the Central Universities, China (Grant No. 201012200053).
Corresponding Authors:  Xu Hui,xuhui@csu.edu.cn;OuYang Fang-Ping,oyfp04@mails.tsinghua.edu.cn     E-mail:  xuhui@csu.edu.cn;oyfp04@mails.tsinghua.edu.cn

Cite this article: 

Xiao Jin(肖金), Yang Zhi-Xiong(杨志雄), Xie Wei-Tao(谢伟涛), Xiao Li-Xin(肖立新), Xu Hui(徐慧), and OuYang Fang-Ping(欧阳方平) Electronic properties of graphene nanoribbon doped by boron/nitrogen pair: a first-principles study 2012 Chin. Phys. B 21 027102

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y and Dubonos S V 2004 Science 306 666
[2] Özyilmaz B, Herrero P J, Efetov D, Abanin D A, Levitov L S and Kim P 2007 Phys. Rev. Lett. 99 166804
[3] Siegel D A, Zhou S Y, Gabaly F E, Fedorov A V, Schmid A K and Lanzara A 2008 Appl. Phys. Lett. 93 243119
[4] Berger C, Song Z, Li X, Wu X, Brown N, N aud C, Mayou D, Li T, Hass J, Marchenkov A N, Conrad E N, First P N and de Heer W A 2006 Science 312 1191
[5] Wu Y Q, Ye P D, Capano M A, Xuan Y, Sui Y and Qi M 2008 Appl. Phys. Lett. 92 092102
[6] Lemme M C, Echtermeyer T J, Baus M and Kurz H 2007 IEEE Electron Device Lett. 28 282
[7] Chen Z H, Lin Y M, Rooks M J and Avouris P 2007 Physica E 40 228
[8] Han M Y, Özyilmaz B, Zhang Y B and Kim P 2007 Phys. Rev. Lett. 98 206805
[9] Nakada K, Fujita M, Dresselhaus G and Dresselhaus M S 1996 Phys. Rev. B 54 954
[10] Wakabayashi K and Hiroshima H 2001 Phys. Rev. B 64 125428
[11] Zheng H X, Wang Z F, Luo T, Shi Q W and Chen J 2007 Phys. Rev. B 75 165414
[12] Sasaki K, Murakami S and Saito R 2006 Appl. Phys. Lett. 88 113110
[13] Castro A H, Guinea F, Peres N M, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[14] Lu Y H, Wu R Q, Shen L, Yang M, Sha Z D and Cai Y Q 2009 Appl. Phys. Lett. 94 12111
[15] Li Z Y, Qian H Y, Wu J, Gu B L and Duan W H 2008 Phys. Rev. Lett. 100 206802
[16] Areshkin D A and White C T 2007 Nano Lett. 7 3253
[17] Gao W, Gong S L, Zhu J Q and Ma G J 2011 Acta Phys. Sin. 60 027104 (in Chinese)
[18] Lu Y, Wang P J, Zhang C W, Jiang L, Zhang G L and Song P 2011 Acta Phys. Sin. 60 063103 (in Chinese)
[19] Yan Q M, Huang B, Yu J, Zheng F W, Zang J, Wu J and Duan W H 2007 Nano Lett. 7 1469
[20] Zhou B H, Duan Z G, Zhou B L and Zhou G H 2010 Chin. Phys. B 19 037204
[21] OuYang F P, Peng S L, Zhang H, Weng L B and Xu H 2011 Chin. Phys. B 20 058504
[22] OuYang F P, Peng S L, Chen L N, Sun S Y and Xu H 2011 Chin. Phys. B 20 027102
[23] Zhang Y H, Chen Y B, Zhou K G, Liu C H, Zeng J and Zhang H L 2009 Nanotechnology 20 185504
[24] Biel B, Blase X, Triozon F and Roche S 2009 Phys. Rev. Lett. 102 096803
[25] Wang X R, Li X L, Zhang L, Yoon Y, Weber P K and Wang H L 2009 Sience 324 768
[26] Wei D C, Liu Y Q, Wang Y, Zhang H L, Huang L P and Yu G 2009 Nano Lett. 9 1752
[27] Yu S S, Zheng W T, Wen Q B and Jiang Q 2008 Carbon 46 537
[28] Huang B, Yan Q M, Zhou G, Wu J, Gu B L and Duan W H 2007 Appl. Phys. Lett. 91 253122
[29] OuYang F P, Yang Z X, Xiao J, Wu D and Xu H 2010 J. Phys. Chem. C 114 15578
[30] OuYang F P, Xiao J, Guo R, Zhang H and Xu H 2009 Nanotechnology 20 055202
[31] Zhou Y G, Zu X T, Gao F, Nie J L and Xiao H Y 2009 J. Appl. Phys. 105 014309
[32] Wang X M and Liu H 2011 Acta Phys. Sin. 60 047102 (in Chinese)
[33] Xu Z, Lu W G, Wang W L, Gu C Z, Liu K H, Bai X D, Wang E and Dai H J 2008 Adv. Mater. 20 3615
[34] Li Y T and Chen T C 2009 Nanotechnology 20 375705
[35] Kresse G and Furthm黮ler J 1996 Comput. Mater. Sci. 6 15
[36] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[37] Perdew J P, Burke K and Ernzerhof M 1998 Phys. Rev. Lett. 80 891
[38] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[6] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[7] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[8] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[9] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[10] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[11] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[12] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[13] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[14] Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍). Chin. Phys. B, 2022, 31(5): 056105.
[15] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
No Suggested Reading articles found!