Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(2): 027103    DOI: 10.1088/1674-1056/21/2/027103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principles calculation of structural and electronic properties of pyrochlore Lu2Sn2O7

Chen Zhong-Jun(陈中钧)a)† and Chen Tai-Hong(陈太红)b)
a. Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, China;
b. College of Physical and Electronic Information, China West Normal University, Nanchong 637002, China
Abstract  A Density functional theory method within generalized gradient approximation has been performed to obtain the static lattice parameters, oxygen positional parameter, bond length and bond angle and electronic properties of ideal Lu2Sn2O7 pyrochlore. The results are in excellent agreement with available experimental measurements. Density of states (DOS) of this compound was presented and analysed. We also notice the presence of the hybridization between oxygen and Lu metal. The band structure calculations show that the compound has direct band gap of 2.67 eV at the Γ point in the Brillouin zone and this indicates that the material has a semi-conducting feature.
Keywords:  stannate pyrochlores      density functional theory      pseudopotential approach      structure properties  
Received:  21 August 2011      Revised:  20 September 2011      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  72.80.Ga (Transition-metal compounds)  
  71.20.Nr (Semiconductor compounds)  
Fund: Project supported by the Scienti c Research Foundation of the Education Bureau of Sichuan Province of China (Grant No. 2010ZC119).
Corresponding Authors:  Chen Zhong-Jun,zjchen@uestc.edu.cn     E-mail:  zjchen@uestc.edu.cn

Cite this article: 

Chen Zhong-Jun(陈中钧) and Chen Tai-Hong(陈太红) First-principles calculation of structural and electronic properties of pyrochlore Lu2Sn2O7 2012 Chin. Phys. B 21 027103

[1] Wuensch B J, Eberman K W and Heremans C 2000 Solid State Ionics 129 111
[2] Yamaura J, Muraoka Y and Sakai F 2002 J. Phys. Chem. Solids 63 1027
[3] Park J K, Kim C H and Choi K J 2001 J. Mater. Res. 16 2568
[4] Gingras M J P, Hertog B C D and Faucher M 2000 Phys. Rev. B 62 6496
[5] Lian J, Helean K B, Kennedy B J, Wang L M, Navrotsky A and Ewing R C 2006 J. Phys. Chem. B 110 2343
[6] Ewing R C, Weber W J and Lian J 2004 J. Appl. Phys. 95 5949
[7] Sickafus K E, Minervini L, Grimes R W, Valdez J A, Ishimaru M, Li F, McClellan K J and Hartmann T 2000 Science 289 748
[8] Weber W J and Ewing R C 2000 Science 289 2051
[9] Weber W C and Ewing R C 2002 Mater. Res. Soc. Symp. Proc. 713 443
[10] Helean K B, Navrotsky A, Vance E R, Carter M L, Ebbinghaus B, Krikorian O, Lian J, Wang L M and Catalano J G 2002 J. Nucl. Mater. 303 226
[11] Digeos A A, Valdez J A, Sickafus K E, Atio S, Grimes R W and Boccaccini A R 2003 J. Mater. Sci. 38 1597
[12] Raison P E and Haire R G 2001 Prog. Nucl. Energ. 38 251
[13] Shoup S S, Bamberger C E and Haire R G 1996 J. Am. Ceram. Soc. 79 1489
[14] Begg B D, Hess N J, McCready D E, Thevuthasan S and Weber W J 2001 J. Nucl. Mater. 289 188
[15] Chakoumakos B C and Ewing R C 1985 “Crystal Chemical Constraints on the Formation of Actinide Pyrochlores”, in Scientific Basis for Nuclear Waste Management VIII Jantzen C M, Stone J A and Ewing R C (ed.) 44 641
[16] Kennedy B J, Hunter B A and Howard C J 1997 J. Solid State Chem. 130 58
[17] Chen Z J, Xiao H Y, Zu X T and Gao F 2008 J. Appl. Phys. 104 093702
[18] Chen Z J and Tian D B 2010 Chin. Phys. B 19 127101
[19] Chen Z J and Tian D B 2010 Chin. Phys. B 19 117103
[20] Zhang J H, Ding J W and Lu Z H 2009 Acta Phys. Sin. 58 1901 (in Chinese)
[21] Blochl P E 1994 Phys. Rev. B 50 17953
[22] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[23] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[24] Kresse G, Hafner J and Needs R J 1992 J. Phys.: Condens. Matter 4 7451
[25] Lian J, Chen J, Wang L M, Ewing R C, Farmer J M, Boatner L A and Helean K B 2003 Phys. Rev. B 68 134107
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[12] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[13] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[14] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[15] Advances and challenges in DFT-based energy materials design
Jun Kang(康俊), Xie Zhang(张燮), and Su-Huai Wei(魏苏淮). Chin. Phys. B, 2022, 31(10): 107105.
No Suggested Reading articles found!