Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(8): 087101    DOI: 10.1088/1674-1056/20/8/087101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

A–188 V 7.2 Ω·mm2, P-channel high voltage device formed on an epitaxy-SIMOX substrate

Wu Li-Juan(吴丽娟)a)b), Hu Sheng-Dong(胡盛东)c), Zhang Bo(张波) a), Luo Xiao-Rong(罗小蓉)a), and Li Zhao-Ji(李肇基)a)
a State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China; b College of Communication Engineering, Chengdu University of Information Technology, Chengdu 610225, China; c College of Communication Engineering, Chongqing University, Chongqing 400044, China
Abstract  This paper proposes a new n+-charge island (NCI) P-channel lateral double diffused metal—oxide semiconductor (LDMOS) based on silicon epitaxial separation by implantation oxygen (E-SIMOX) substrate. Higher concentration self-adapted holes resulting from a vertical electric field are located in the spacing of two neighbouring n+ -regions on the interface of a buried oxide layer, and therefore the electric field of a dielectric buried layer (EI) is enhanced by these holes effectively, leading to an improved breakdown voltage (BV). The VB and EI of the NCI P-channel LDMOS increase to —188 V and 502.3 V/μm from -75 V and 82.2 V/μm of the conventional P-channel LDMOS with the same thicknesses SOI layer and the buried oxide layer, respectively. The influences of structure parameters on the proposed device characteristics are investigated by simulation. Moreover, compared with the conventional device, the proposed device exhibits low special on-resistance.
Keywords:  dielectric buried layer      breakdown voltage      self-adapted holes      epitaxy-SIMOX  
Received:  09 December 2010      Revised:  10 January 2011      Accepted manuscript online: 
PACS:  71.10.-w (Theories and models of many-electron systems)  
  73.20.-r (Electron states at surfaces and interfaces)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  77.20.Jp  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60806025 and 60976060), the Fund of the National Laboratory of Analog Integrated Circuit (Grant No. 9140C0903070904), and the Youth Teacher Foundation of the University of Electronic Science and Technology of China (Grant No. jx0721).

Cite this article: 

Wu Li-Juan(吴丽娟), Hu Sheng-Dong(胡盛东), Zhang Bo(张波), Luo Xiao-Rong(罗小蓉), and Li Zhao-Ji(李肇基) A–188 V 7.2 Ω·mm2, P-channel high voltage device formed on an epitaxy-SIMOX substrate 2011 Chin. Phys. B 20 087101

[1] Kim J, Roh T M and Kim S G 2001 IEEE Trans. Electron. Dev. 48 1256
[2] Sumida H, Hirabayashi A and Kobayashi H 2002 Int. SOI Conf. 28 64
[3] Sumida H, Maiguma H and Shimizu N 2007 Proc. Int. Symp. Power Semicond. Dev. ICs (Jeju Island: Korea) 19 p. 229
[4] Kobayashi K, Yanagigawa H and Mori K 1998 Proc. Int. Symp. Power Semicond. Dev. ICs (Kyoto: Japan) 10 p. 141
[5] Lee M R, Kwon O K and Lee S S 1999 Proc. Int. Symp. Power Semicond. Dev. ICs (Toronto: Canada) 11 p. 285
[6] Weyers J and Vogt H 1992 Electron Devices Meeting Technical Digest. International p. 225
[7] Colinge J P 1995 Microelectronic Engineering 28 p. 423
[8] Roh T M, Lee D W and Kim S G 2003 Proc. Int. Symp. Power Semicond. Dev. ICs (Cambridge: UK) 15 p. 236
[9] Sun W F, Shi L X and Sun Z L 2006 IEEE Trans. Electron. Dev. 53 891
[10] Merchant S, Arnold E and Baumgart H 1991 Proc. IEEE Int. Symp. Power Semicond. Dev. ICs (Baltimore, MD, USA) p. 31
[11] Nakagawa A, Yasuhara N and Baba Y 1991 IEEE Trans. Electron. Dev. 38 1650
[12] Funaki H, Yamaguchi Y and Hirayama K 1998 Proc.10th Int. Symp. Power Semicond. Dev. ICs (Tokyo, Japan) p. 25
[13] Qiao M, Zhang B and Li Z J 2007 Acta Phys. Sin. 56 3990 (in Chinese)
[14] Luo X R, Wang Y G, Deng H and Florin Udrea 2010 Chin. Phys. B bf 19 077306
[15] Luo X R, Yao G L, Chen X, Wang Q, Ge R and Florin Udrea 2011 Chin. Phys. B 20 028501
[16] Hu S D, Li Z J and Zhang B 2009 Chin. Phys. B bf18 315
[17] Hu S D, Li Z J, Zhang B and Luo X R 2010 Chin. Phys. B bf19 037303
[18] Wu L J, Hu S D, Zhang B and Li Z J 2010 J. Semicond. bf31 044008-1
[19] TMA MEDICI 4.2 Palo Alto: Technology Modeling Associates Inc.
[20] Guo Y F, Fang J, Zhang B and Li Z J 2005 Chin. J. Semicond. bf26 33
[21] Luo X R, Zhang B and Li Z J 2007 Solid-State Electronics 51 493
[22] Luo X R, Zhang W, Zhang B, Li Z J, Yang S G, Zhan Z and Fu D P 2008 Semicond. Sci. Technol. 23 035028
[22] Chung S K, Han S Y and Shin J C 1996 IEEE Electron Dev. Lett. bf17 22
[1] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[2] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[3] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[4] Lateral β-Ga2O3 Schottky barrier diode fabricated on (-201) single crystal substrate and its temperature-dependent current-voltage characteristics
Pei-Pei Ma(马培培), Jun Zheng(郑军), Ya-Bao Zhang(张亚宝), Xiang-Quan Liu(刘香全), Zhi Liu(刘智), Yu-Hua Zuo(左玉华), Chun-Lai Xue(薛春来), and Bu-Wen Cheng(成步文). Chin. Phys. B, 2022, 31(4): 047302.
[5] Modeling of high permittivity insulator structure with interface charge by charge compensation
Zhi-Gang Wang(汪志刚), Yun-Feng Gong(龚云峰), and Zhuang Liu(刘壮). Chin. Phys. B, 2022, 31(2): 028501.
[6] Terminal-optimized 700-V LDMOS with improved breakdown voltage and ESD robustness
Jie Xu(许杰), Nai-Long He(何乃龙), Hai-Lian Liang(梁海莲), Sen Zhang(张森), Yu-De Jiang(姜玉德), and Xiao-Feng Gu(顾晓峰). Chin. Phys. B, 2021, 30(6): 067303.
[7] Design and simulation of AlN-based vertical Schottky barrier diodes
Chun-Xu Su(苏春旭), Wei Wen(温暐), Wu-Xiong Fei(费武雄), Wei Mao(毛维), Jia-Jie Chen(陈佳杰), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(6): 067305.
[8] A super-junction SOI-LDMOS with low resistance electron channel
Wei-Zhong Chen(陈伟中), Yuan-Xi Huang(黄元熙), Yao Huang(黄垚), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2021, 30(5): 057303.
[9] Improved 4H-SiC UMOSFET with super-junction shield region
Pei Shen(沈培), Ying Wang(王颖), Xing-Ji Li(李兴冀), Jian-Qun Yang(杨剑群), Cheng-Hao Yu(于成浩), and Fei Cao(曹菲). Chin. Phys. B, 2021, 30(5): 058502.
[10] Novel Si/SiC heterojunction lateral double-diffused metal-oxide semiconductor field-effect transistor with p-type buried layer breaking silicon limit
Baoxing Duan(段宝兴), Xin Huang(黄鑫), Haitao Song (宋海涛), Yandong Wang(王彦东), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(4): 048503.
[11] Novel fast-switching LIGBT with P-buried layer and partial SOI
Haoran Wang(王浩然), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(2): 027302.
[12] Simulation study of high voltage GaN MISFETs with embedded PN junction
Xin-Xing Fei(费新星), Ying Wang(王颖), Xin Luo(罗昕), Cheng-Hao Yu(于成浩). Chin. Phys. B, 2020, 29(8): 080701.
[13] Variable-K double trenches SOI LDMOS with high-concentration P-pillar
Lijuan Wu(吴丽娟), Lin Zhu(朱琳), Xing Chen(陈星). Chin. Phys. B, 2020, 29(5): 057701.
[14] Numerical and analytical investigations for the SOI LDMOS with alternated high-k dielectric and step doped silicon pillars
Jia-Fei Yao(姚佳飞), Yu-Feng Guo(郭宇锋), Zhen-Yu Zhang(张振宇), Ke-Meng Yang(杨可萌), Mao-Lin Zhang(张茂林), Tian Xia(夏天). Chin. Phys. B, 2020, 29(3): 038503.
[15] Breakdown voltage enhancement in GaN channel and AlGaN channel HEMTs using large gate metal height
Zhong-Xu Wang(王中旭), Lin Du(杜林), Jun-Wei Liu(刘俊伟), Ying Wang(王颖), Yun Jiang(江芸), Si-Wei Ji(季思蔚), Shi-Wei Dong(董士伟), Wei-Wei Chen(陈伟伟), Xiao-Hong Tan(谭骁洪), Jin-Long Li(李金龙), Xiao-Jun Li(李小军), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(2): 027301.
No Suggested Reading articles found!