CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Magnetic properties of Mn-doped GaN with defects: ab-initio calculations |
E. Salmania), A. Benyoussefa), H. Ez-Zahraouya)†, and E.H. Saidib) |
a LMPHE, Departement de Physique, Faculté des Sciences, Université Mohammed V-Agdal, Rabat, Morocco; b LPHE, Departement de Physique, Faculté des Sciences, Université Mohammed V-Agdal, Rabat, Morocco |
|
|
Abstract According to first-principles density functional calculations, we have investigated the magnetic properties of Mn-doped GaN with defects, Ga1-x-yVGxMny N1-z-tVNzOt with Mn substituted at Ga sites, nitrogen vacancies VN, gallium vacancies VG and oxygen substituted at nitrogen sites. The magnetic interaction in Mn-doped GaN favours the ferromagnetic coupling via the double exchange mechanism. The ground state is found to be well described by a model based on a Mn3+—d5 in a high spin state coupled via a double exchange to a partially delocalized hole accommodated in the 2p states of neighbouring nitrogen ions. The effect of defects on ferromagnetic coupling is investigated. It is found that in the presence of donor defects, such as oxygen substituted at nitrogen sites, nitrogen vacancy antiferromagnetic interactions appear, while in the case of Ga vacancies, the interactions remain ferromagnetic; in the case of acceptor defects like Mg and Zn codoping, ferromagnetism is stabilized. The formation energies of these defects are computed. Furthermore, the half-metallic behaviours appear in some studied compounds.
|
Received: 24 October 2010
Revised: 19 April 2011
Accepted manuscript online:
|
PACS:
|
66.30.Xj
|
(Thermal diffusivity)
|
|
72.20.Dp
|
(General theory, scattering mechanisms)
|
|
72.20.My
|
(Galvanomagnetic and other magnetotransport effects)
|
|
72.25.Dc
|
(Spin polarized transport in semiconductors)
|
|
Cite this article:
E. Salmani, A. Benyoussef, H. Ez-Zahraouy, and E.H. Saidi Magnetic properties of Mn-doped GaN with defects: ab-initio calculations 2011 Chin. Phys. B 20 086601
|
[1] |
Nakamura S 1998 in GaN I, Semiconductors and Semimetals ed. Pankov J N and Moustakas T D (New York: Academic) pp. 431—437
|
[2] |
Gil B 1998 Group III Nitride Semiconductor Compounds: `Physics and Applications' (Oxford: Clarendon)
|
[3] |
Strite S and Marc_ - oc H 1992 J. Vac. Sci. Technol. B 10 1237
|
[4] |
Nakamura S and Fasol G 1998 The Blue Laser Diode (Berlin: Springer)
|
[5] |
Orton J and Foxon C 1998 Rep. Prog. Phys. 61 1
|
[6] |
Kung P and Razeghi M 2000 Opt. Electron. Rev. 8 201
|
[7] |
Das Sharma S 2001 Am. Sci. 89 516
|
[8] |
Dietl T, Ohno H, Matsukura F and Ferrand D 2000 Science 287 1019
|
[9] |
Hasuike N, Fukumura H, Harima H, Kisoda K, Hashimoto M, Zhou Y K and Asahi H 2004 J. Phys.: Condens. Matter 16 S5811
|
[10] |
Harima 2004 J. Phys.: Condens. Matter 16 S5653
|
[11] |
Zajac M, Doradzinski R, Gosk J, Szczytko J, Lefeld M, Kaminska M, Twardowski A, Palczewska M, Granka E and Gebicki W 2001 Appl. Phys. Lett. 78 1276
|
[12] |
Thaler G T, Overberg M E, Gila B P, Franzier R, Albernathy C R, Pearton S J, Lee J S, Lee S M, Park Y D, Khim Z G, Kim J and Ren F 2002 Appl. Phys. Lett. 80 3964
|
[13] |
Shon Y, Kwon Y H, Yuldashev Sh U, Lim J H, Park C S, Fu D J, Kim H J, Kang T W and Fan X J 2002 Appl. Phys. Lett. 81 1845
|
[14] |
Sonoda S, Shimizu S, Sasaki T, Yamamoto Y, Hori H and Cryst J 2002 Growth 237—239 1358
|
[15] |
Ando K 2003 Appl. Phys. Lett. 82 100
|
[16] |
Kim J, Ren F, Thaler G T, Frazier R, Abernathy C R, Pearton S J, Zavada J M and Whilson R G 2003 Appl. Phys. Lett. 82 1565
|
[17] |
Marques M, Teles L K, Scolfaro L M R, Furthmüller J, Bechstedt F and Ferreira L G 2005 Appl. Phys. Lett. 86 164105
|
[18] |
Baik J M, Shon Y, Kang T W and Lee J L 2005 Appl. Phys. Lett. 87 42105
|
[19] |
Norton D P, Pearton S J, Hebard A F, Theodoropoulou N, Boatner L A and Wilson R G 2003 Appl. Phys. Lett. 82 239
|
[20] |
Lee S, Shon Y, Lee S W, Hwang S J, Lee H S, Kang T W and Kim D Y 2006 Appl. Phys. Lett. 88 212513
|
[21] |
Reed M L, El-Masry N A, Stadelmaier H H, Ritums M K, Reed M J, Parker C A, Roberts J C and Bedair S M 2001 Appl. Phys. Lett. 79 3473
|
[22] |
Thaler G T, Overberg M E, Gila B, Frazier R, Abernathy C R, Pearton S J, Lee J S, Lee S Y, Park Y D, Khim Z G, Kim J and Ren F 2002 Appl. Phys. Lett. 80 3964
|
[23] |
Ando K 2003 Appl. Phys. Lett. 82 100
|
[24] |
Zajac M, Gosk J, Kaminska M, Twardowski A, Szyszko T and Podsiadlo S 2001 Appl. Phys. Lett. 79 2432
|
[25] |
Uspenskii Y, Kulatov E, Mariette H, Nakayama H and Ohta H 2003 J. Magn. Magn. Mater. 258—259 248
|
[26] |
Sanyal B and Mirbt S 2005 J. Magn. Magn. Mater. 290—291 1408
|
[27] |
Raibiger H, Ayuela A and Nieminen R M 2004 J. Phys.: Condens. Matter 16 L457
|
[28] |
Vosko S H, Wilk L and Nusair M 1980 Can. J. Phys. 58 1200
|
[29] |
Akai H and Dederichs P H 1993 Phys. Rev. B 47 8739
|
[30] |
Akai H 1998 Phys. Rev. Lett. 81 3002
|
[31] |
Sato K and Katayama-Yoshida H 2000 Jpn. J. Appl. Phys. 39 L555
|
[32] |
Sato K and Katayama-Yoshida H 2001 Jpn. J. Appl. Phys. 40 L334
|
[33] |
MACHIKANEYAMA2002v08: Akai H, Department of Physics, Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka 560-0043, Japan, akai@phys.sci.osaka-u.ac.jp
|
[34] |
Yeo Y C, Chong T C and Li M F 1998 J. Appl. Phys. 83 1429
|
[35] |
Sato K, Schweika W, Dederichs P H and Katayama-Yoshida H 2004 Phys. Rev. B 70 201202R
|
[36] |
Titov A, Biquard X, Halley D, Kuroda S, Bellet-Amalric E, Mariette H, Cibert J, Merad A E, Merad G, Kanoun M B, Kulatov E and Uspenskii Yu A 2005 Phys. Rev. B 72 115209
|
[37] |
Jungwirth T, Wang K Y, Mavsek J, Edmonds K W, K"onig J, Sinova J, Polini M, Goncharuk N, MacDonald A H, Sawicki M, Rushforth A W, Campion R P, Zhao L X, Foxon C T and Gallagher B L 2005 Phys. Rev. B 72 165204
|
[38] |
Kulatov E, Uspenskii Y, Mariette H, Cibert J, Ferrand D, Nakayama H and Ohta H 2003 J. Supercond. 16 123
|
[39] |
Graf T, Gjukic M, Brandt M S, Stutzmann M and Ambacher O 2002 Appl. Phys. Lett. 81 5159
|
[40] |
Wolos A, Wysmolek A, Kaminska M, Twardowski A, Bockowski M, Grzegory I, Porowski S and Potemski M 2004 Phys. Rev. B 70 245202
|
[41] |
Jaeger C, Bihler C, Vallaitis T, Goennenwein S T B, Opel M, Gross R and Brandt M S 2006 Phys. Rev. B 74 045330
|
[42] |
Han B, Wessels B W and Ulme M P 2005 Appl. Phys. Lett. 86 042505
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|