Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(8): 086801    DOI: 10.1088/1674-1056/20/8/086801
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Kinetics of catalytically activated aggregation–fragmentation process

Gao Yan(高艳)a), Wang Hai-Feng(王海锋) a)†, Lin Zhen-Quan(林振权)b), and Xue Xin-Ying(薛新英) a)
a Key Laboratory of Ecophysics and Department of Physics, College of Science, Shihezi University, Shihezi 832003, China; b Department of Physics, Wenzhou University, Wenzhou 325027, China
Abstract  We propose a catalytically activated aggregation—fragmentation model of three species, in which two clusters of species A can coagulate into a larger one under the catalysis of B clusters; otherwise, one cluster of species A will fragment into two smaller clusters under the catalysis of C clusters. By means of mean-field rate equations, we derive the asymptotic solutions of the cluster-mass distributions ak(t) of species A, which is found to depend strongly on the competition between the catalyzed aggregation process and the catalyzed fragmentation process. When the catalyzed aggregation process dominates the system, the cluster-mass distribution ak(t) satisfies the conventional scaling form. When the catalyzed fragmentation process dominates the system, the scaling description of ak(t) breaks down completely and the monodisperse initial condition of species A would not be changed in the long-time limit. In the marginal case when the effects of catalyzed aggregation and catalyzed fragmentation counteract each other, ak(t) takes the modified scaling form and the system can eventually evolve to a steady state.
Keywords:  aggregation      fragmentation      catalytically activated reaction      rate equation  
Received:  02 November 2010      Revised:  20 February 2011      Accepted manuscript online: 
PACS:  68.43.Jk (Diffusion of adsorbates, kinetics of coarsening and aggregation)  
  82.20.-w (Chemical kinetics and dynamics)  
  89.75.Da (Systems obeying scaling laws)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10275048 and 10875086) and by the Science Foundation of Shihezi University (Grant No. RCZX200745).

Cite this article: 

Gao Yan(高艳), Wang Hai-Feng(王海锋), Lin Zhen-Quan(林振权), and Xue Xin-Ying(薛新英) Kinetics of catalytically activated aggregation–fragmentation process 2011 Chin. Phys. B 20 086801

[1] Seinfeld J H and Pandis S N 1998 Atmospheric Chemistry and Physics (New York: Wiley)
[2] Stockmayer W H 1943 J. Chem. Phys. 11 45
[3] Flory P J 1953 Principles of Polymer Chemistry (Ithaca: Cornell University Press)
[4] Anderson P W, Arrow K J and Pines D 1988 The Economy as an Evolving Complex System (Redwood: Addison-Wesley)
[5] Brenner Y S, Reijnders J P G and Spithoven A H G M 1988 The Theory of Income and Wealth Distribution (New York: St. Martin Press)
[6] Ispolatov S, Krapivsky P L and Redner S 1998 Eur. Phys. J. B 2 267
[7] Leyvraz F and Redner S 2002 Phys. Rev. Lett. 88 068301
[8] Ben-Naim E and Redner S 2005 J. Stat. Mech. L11002
[9] Shi H P, Ke J H, Sun C and Lin Z Q 2009 Acta Phys. Sin. 58 1 (in Chinese)
[10] Liang X M, Ma L J and Tang M 2009 Acta Phys. Sin. 58 83 (in Chinese)
[11] Ke J H, Chen X S and Lin Z Q 2010 Chin. Phys. B 19 026802
[12] Shinnar R 1961 J. Fluid Mech. 10 259
[13] Chase K C, Bhattacharyya P and Mekjian A Z 1998 Phys. Rev. C 57 822
[14] McGrady E D and Ziff R M 1987 Phys. Rev. Lett. 58 892
[15] Ishii T and Matsushita M 1992 J. Phys. Soc. Jpn. 61 3474
[16] Oddershede L, Dimon P and Bohr J 1993 Phys. Rev. Lett. 71 3107
[17] Ziff R M and McGrady E D 1985 J. Phys. A: Math. Gen. 18 3027
[18] Family F, Meakin P and Deutch J M 1986 Phys. Rev. Lett. 57 727
[19] Wang L, Vigil R D and Fox R O 2005 J. Colloid Interface Sci. 285 167
[20] Vigil R D, Vermeersch I and Fox R O 2006 J. Colloid Interface Sci. 302 149
[21] Straube R and Falcke M 2007 Phys. Rev. E 76 010402
[22] Ben-Naim E and Krapivsky P L 2008 Phys. Rev. E 77 061132
[23] Ke J H, Wang X H, Lin Z Q and Zhuang Y Y 2004 Physica A 338 356
[24] Ke J H, Lin Z Q and Chen X S 2008 J. Phys. A: Math. Theor. 41 285005
[25] Shen W W, Li P P and Ke J H 2010 Acta Phys. Sin. 59 6681 (in Chinese)
[26] Bond G C 1987 Heterogeneous Catalysis: Principles and Applications (Oxford: Clarendon)
[27] Oshanin G and Burlatsky S F 2002 J. Phys. A: Math. Gen. 35 L695
[28] Benichou O, Coppey M, Moreau M and Oshanin G 2005 J. Chem. Phys. 123 194506
[29] Chen Y, Han A J, Ke J H and Lin Z Q 2006 Chin. Phys. 15 1896
[30] Wang H F, Lin Z Q, Gao Y and Xu C 2009 Chin. Phys. B 18 3577
[31] Lin Z Q, Ke J H and Ye G X 2006 Phys. Rev. E 74 046113
[32] Wang H F, Lin Z Q and Ke J H 2007 Phys. Rev. E 75 046108
[33] Cheng Z and Redner S 1990 J. Phys. A: Math. Gen. 23 1233
[34] Ernst M H, Hendriks E M and Ziff R M 1982 J. Phys. A: Math. Gen. 15 L743
[35] Ziff R M, Ernst M H and Hendriks E M 1983 J. Phys. A: Math. Gen. 16 2293
[36] Ke J H and Lin Z Q 2002 Phys. Rev. E 66 062101
[37] Krapivsky P L 1993 Physica A 198 135
[38] Ben-Naim E and Krapivsky P L 1995 Phys. Rev. E 52 6066
[39] Ke J H, Cai X O and Lin Z Q 2004 Phys. Lett. A 331 281
[1] Atomic structure and collision dynamics with highly charged ions
Xinwen Ma(马新文), Shaofeng Zhang(张少锋), Weiqiang Wen(汶伟强), Zhongkui Huang(黄忠魁), Zhimin Hu(胡智民), Dalong Guo(郭大龙), Junwen Gao(高俊文), Bennaceur Najjari, Shenyue Xu(许慎跃), Shuncheng Yan(闫顺成), Ke Yao(姚科), Ruitian Zhang(张瑞田), Yong Gao(高永), and Xiaolong Zhu(朱小龙). Chin. Phys. B, 2022, 31(9): 093401.
[2] Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞). Chin. Phys. B, 2022, 31(7): 077901.
[3] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[4] Pump pulse characteristics of quasi-continuous-wave diode-side-pumped Nd:YAG laser
Zexin Song(宋泽鑫), Qi Bian(卞奇), Yu Shen(申玉), Keling Gong(龚柯菱), Nan Zong(宗楠), Qingshuang Zong(宗庆霜), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(5): 054208.
[5] Studies on aluminum powder combustion in detonation environment
Jian-Xin Nie(聂建新), Run-Zhe Kan(阚润哲), Qing-Jie Jiao(焦清介), Qiu-Shi Wang(王秋实), Xue-Yong Guo(郭学永), and Shi Yan(闫石). Chin. Phys. B, 2022, 31(4): 044703.
[6] Peptide backbone-copper ring structure: A molecular insight into copper-induced amyloid toxicity
Jing Wang(王静), Hua Li(李华), Xiankai Jiang(姜先凯), Bin Wu(吴斌), Jun Guo(郭俊), Xiurong Su(苏秀榕), Xingfei Zhou(周星飞), Yu Wang(王宇), Geng Wang(王耿), Heping Geng(耿和平), Zheng Jiang(姜政), Fang Huang(黄方), Gang Chen(陈刚), Chunlei Wang(王春雷), Haiping Fang(方海平), and Chenqi Xu(许琛琦). Chin. Phys. B, 2022, 31(10): 108702.
[7] Tunable inhibition of β-amyloid peptides by fast green molecules
Tiantian Yang(杨甜甜), Tianxiang Yu(俞天翔), Wenhui Zhao(赵文辉), and Dongdong Lin(林冬冬). Chin. Phys. B, 2021, 30(8): 088701.
[8] Perspective for aggregation-induced delayed fluorescence mechanism: A QM/MM study
Jie Liu(刘杰), Jianzhong Fan(范建忠), Kai Zhang(张凯), Yuchen Zhang(张雨辰), Chuan-Kui Wang(王传奎), Lili Lin(蔺丽丽). Chin. Phys. B, 2020, 29(8): 088504.
[9] Coherent control of fragmentation of methyl iodide by shaped femtosecond pulse train
Qiu-Nan Tong(佟秋男), De-Hou Fei(费德厚), Zhen-Zhong Lian(廉振中), Hong-Xia Qi(齐洪霞), Sheng-Peng Zhou(周胜鹏), Si-Zuo Luo(罗嗣佐), Zhou Chen(陈洲), Zhan Hu(胡湛). Chin. Phys. B, 2019, 28(9): 093201.
[10] Luminescent properties of thermally activated delayed fluorescence molecule with intramolecular π-π interaction betweendonor and acceptor
Lei Cai(蔡磊), Jianzhong Fan(范建忠), Xiangpeng Kong(孔祥朋), Lili Lin(蔺丽丽), Chuan-Kui Wang(王传奎). Chin. Phys. B, 2017, 26(11): 118503.
[11] Modified Maxwell model for predicting thermal conductivity of nanocomposites considering aggregation
Wen-Kai Zhen(甄文开), Zi-Zhen Lin(蔺子甄), Cong-Liang Huang(黄丛亮). Chin. Phys. B, 2017, 26(11): 114401.
[12] Convenient synthesis of stable silver quantum dots with enhanced photoluminescence emission by laser fragmentation
Shuang Li(李爽), Ming Chen(陈明). Chin. Phys. B, 2016, 25(4): 046103.
[13] An equivalent circuit model for terahertz quantumcascade lasers: Modeling and experiments
Yao Chen (姚辰), Xu Tian-Hong (徐天鸿), Wan Wen-Jian (万文坚), Zhu Yong-Hao (朱永浩), Cao Jun-Cheng (曹俊诚). Chin. Phys. B, 2015, 24(9): 094208.
[14] Ionizations and fragmentations of benzene, methylbenzene, and chlorobenzene in strong IR and UV laser fields
Zhang Jun-Feng (张军峰), Lü Hang (吕航), Zuo Wan-Long (左万龙), Xu Hai-Feng (徐海峰), Jin Ming-Xing (金明星), Ding Da-Jun (丁大军). Chin. Phys. B, 2015, 24(11): 113301.
[15] Crossover from 2-dimensional to 3-dimensional aggregations of clusters on square lattice substrates
Cheng Yi (程毅), Zhu Yu-Hong (祝宇红), Pan Qi-Fa (潘启发), Yang Bo (杨波), Tao Xiang-Ming (陶向明), Ye Gao-Xiang (叶高翔). Chin. Phys. B, 2015, 24(11): 118105.
No Suggested Reading articles found!