Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(3): 037301    DOI: 10.1088/1674-1056/20/3/037301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Impurity-related electronic properties in quantum dots under electric and magnetic fields

Zhang Hong(张红)a)†, Zhai Li-Xue(翟利学)b), Wang Xue(王学)a), Zhang Chun-Yuan(张春元)a), and Liu Jian-Jun(刘建军)b)
a College of Science, Hebei University of Engineering, Handan, Heibei 056038, China; b College of Physics Science and Information Engineering, Hebei Nornal University, Shijiazhuang, Hebei 050016, China
Abstract  This paper presents a systematic study of the ground-state binding energies of a hydrogenic impurity in quantum dots subjected to external electric and magnetic fields. The quantum dot is modeled by superposing a lateral parabolic potential, a Gaussian potential and the energies are calculated via the finite-difference method within the effective-mass approximation. The variation of the binding energy with the lateral confinement, external field, position of the impurity, and quantum-size is studied in detail. All these factors lead to complicated binding energies of the donor, and the following results are found: (1) the binding energies of the donor increase with the increasing magnetic strength and lateral confinement, and reduce with the increasing electric strength and the dot size; (2) there is a maximum value of the binding energies as the impurity placed in different positions along the z direction; (3) the electric field destroys the symmetric behaviour of the donor binding energies as the position of the impurity.
Keywords:  quantum dot      hydrogenic impurity      binding energy  
Received:  22 August 2010      Revised:  19 October 2010      Accepted manuscript online: 
PACS:  73.20.Hb (Impurity and defect levels; energy states of adsorbed species)  
  73.21.La (Quantum dots)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10674040) and the Natural Science Foundation of Hebei Province, China (Grant No. A2007000233).

Cite this article: 

Zhang Hong(张红), Zhai Li-Xue(翟利学), Wang Xue(王学), Zhang Chun-Yuan(张春元), and Liu Jian-Jun(刘建军) Impurity-related electronic properties in quantum dots under electric and magnetic fields 2011 Chin. Phys. B 20 037301

[1] Movilla J L and Planelles J 2005 Phys. Rev. B 71 075319
[2] Mikhailov I D, Betancur F J, Escorica R A and Sierra-Ortega J 2003 Phys. Rev. B 67 115317
[3] Li S S and Xia J B 2007 J. Appl. Phys. 101 093716
[4] Zhu J L and Chen X 1994 Phys. Rev. B 50 4497
[5] Li Y, Liu J and Kong X 2000 J. Appl. Phys. 88 2588
[6] Li H J, Sun J K and Xiao J L 2010 Chin. Phys. B 19 010314
[7] Wang X H, An X T and Liu J J 2009 Chin. Phys. B 18 749
[8] Liu Y M, Yu Z Y and Ren X M 2009 Chin. Phys. B 18 0009
[9] Zhang H, Liu L and Liu J J 2007 Acta Phys. Sin. 57 487 (in Chinese)
[10] Oliveira L E, Porras-Montenegro N and Latg'e A 1993 Phys. Rev. B 47 13864
[11] Li S S and Xia J B 2006 J. Appl. Phys. 100 083714
[12] Li G, Branis S V and Bajaj K K 1990 Phys. Rev. B 47 15735
[13] Xiao Z G, Zhu J Q and He F G 2006 J. Appl. Phys. 79 9181
[14] Brozak G, de Andrada e Silva E A, Sham L J, DeRosa F, Miceli P, Schwarz S A, Harbison J P, Florez L T and Allen Jr S J 1997 Phys. Rev. Lett. 64 471
[15] An X T and Liu J J 2006 J. Appl. Phys. 99 123713
[16] Ferreyra J M, Bosshard P and Proetto C R 1997 Phys. Rev. B 55 13682
[17] Brum J A, Priester C and Allan G 1985 Phys. Rev. B 32 2378
[18] L'opez-Gondar J, d'Albuquerque e Castro J and Oliveira L E 1990 Phys. Rev. B 42 7069
[19] Mendoza C I, Vazquez G J, del Castillo-Mussot M and Spector H 2005 Phys. Rev. B 71 075330
[20] Bednarek S, Szafran B, Chwiej T and Adamowski J 2003 Phys. Rev. B 68 045328
[21] Szafran B, Bednarek S and Adamowski J 2001 Phys. Rev. B 64 125301 endfootnotesize
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[4] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[5] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[6] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[7] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[8] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[9] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[10] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[11] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[12] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[13] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
[14] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[15] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
No Suggested Reading articles found!