Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(2): 024502    DOI: 10.1088/1674-1056/20/2/024502
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Numerical simulation of two-dimensional granular shearing flows and the friction force of a moving slab on the granular media

Cai Qing-Dong(蔡庆东)a)†, Chen Shi-Yi(陈十一)a)b), and Sheng Xiao-Wei(盛晓伟) a)
a LTCS and CAPT, Department of Mechanics and Aerospace Engineering, College of Engineering, Peking University, Beijing 100871, China; b Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
Abstract  This paper studies some interesting features of two-dimensional granular shearing flow by using molecular dynamic approach for a specific granular system. The obtained results show that the probability distribution function of velocities of particles is Gaussian at the central part, but diverts from Gaussian distribution nearby the wall. The macroscopic stress along the vertical direction has large fluctuation around a constant value, the non-zero average velocity occurs mainly near the moving wall, which forms a shearing zone. In the shearing movement, the volume of the granular material behaves in a random manner. The equivalent friction coefficient between moving slab and granular material correlates with the moving speed at low velocity, and approaches constant as the velocity is large enough.
Keywords:  granular shearing flow      friction      molecular dynamics modeling  
Received:  22 January 2010      Revised:  04 May 2010      Accepted manuscript online: 
PACS:  45.79.Mg  
  47.11.Mn (Molecular dynamics methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10872005 and 10128204).

Cite this article: 

Cai Qing-Dong(蔡庆东), Chen Shi-Yi(陈十一), and Sheng Xiao-Wei(盛晓伟) Numerical simulation of two-dimensional granular shearing flows and the friction force of a moving slab on the granular media 2011 Chin. Phys. B 20 024502

[1] Rosato A, Strandburg K J, Prinz F and Swendsen R H 1987 Phys. Rev. Lett. 58 1038
[2] Knight J B, Jaeger H M and Nagel S R 1993 Phys. Rev. Lett. 70 3728
[3] Mullin T 2002 Science 295 1851
[4] Jiang Z, Jing Y, Zhao H and Zheng R 2009 Acta Phys. Sin. 58 5923 (in Chinese)
[5] Deng M, Guo H, Jia Y, Liu F, Tang G and Yang X 2010 Acta Phys. Sin. 59 1116 (in Chinese)
[6] Hou Z, Li L, Liang X, Lu Z, Shi Q, Sun G and Yang L 2008 Acta Phys. Sin. 57 2300 (in Chinese)
[7] Baxter G W, Behringer R P, Faggert T and Johnson G A 1989 Phys. Rev. Lett. 62 2825
[8] Douady S, Fauve S and Laroche C 1989 Europhys. Lett. 8 621
[9] Duaran J, Mazozi T, Cl'ement E and Rajchenbach J 1994 Phys. Rev. E 50 5138
[10] Daerr A and Douady S 1999 Nature 399 241
[11] Daerr A 2001 Phys. Fluids 13 2115
[12] Thoroddsen S T and Shen A Q 2001 Phys. Fluids 13 4
[13] Hou M, Liu R, Lu K, Peng Z, Wu Y and Zhang Q 2006 Acta Phys. Sin. 55 6203 (in Chinese)
[14] Hou M, Chen W, Zhang T and Lu K 2003 Phys. Rev. Lett. 91, 204301
[15] Bao D, Chen W, Hou M, Hu G, Lu K, Xu G and Zhang X 2003 Acta Phys. Sin. 52 875 (in Chinese)
[16] Hou M, Huang D, Lu K and Sun G 2006 Acta Phys. Sin. 55 4754 (in Chinese)
[17] Aranson I S and Tsimring L S 2001 Phys. Rev. E 64 020301
[18] Rajchenbach J 2002 Phys. Rev. Lett. 88 014301
[19] Pouliquen O and Forterre Y 2002 J. Fluid Mech. 453 133
[20] Hill K M, Khakhar D V, Gilchrist J F, McCarthy J J and Ottino J M 1999 Proc. Natl. Acad. Sci. 96 11701
[21] Ottino J M and Khakhar D V 2000 Ann. Rev. Fluid Mech. 32 55
[22] Forterre Y and Pouliquen O 2008 Ann. Rev. Fluid Mech. 40 1
[23] Thompson P A and Grest G S 1991 Phys. Rev. Lett. 67 1751
[24] Polashenski Jr W, Zamankhan P, M"akiharju S and Zamankhan P 2002 Phys. Rev. E 66 021303
[25] Da Cruz F, Emam S, Prochnow M, Rous J N and Chevoir F 2005 Phys. Rev. E 72 021309
[26] Jop P, Forterre Y and Pouliquen O 2006 Nature 441 727
[27] Schall P and van Hecke M 2010 Ann. Rev. Fluid Mech. 42 67
[28] Sch"afer J and Wolf D E 1995 Phys. Rev. E 51 6154
[29] Herrmann H J 1993 Disorder and Granular Media (Amsterdam: Elsevier) p. 305
[30] Chen S, Deng Y, Nie X and Tu Y 2000 Phys. Lett. A 269 218
[31] Nie X, Ben-Naim E and Chen S 2000 Europhys. Lett. 51 679
[32] Tanaka K, Mishida M, Kunimochi T and Takagi T 2002 Powder Technol. 124 160
[33] Karion A and Hunt M L 1999 J. Heat Trans. Transac. ASME 121 948
[34] Cundall P A and Strack O D L 1979 G'eotechnique 29 47
[35] Berndel L and Dippel S 1998 Proceedings of the NATO Advanced Study Institute on Physics of Dry Granular Media, Cargese, France, Sep. 15--26, 1997 p. 31 endfootnotesize
[1] Mechanism analysis and improved model for stick-slip friction behavior considering stress distribution variation of interface
Jingyu Han(韩靖宇), Jiahao Ding(丁甲豪), Hongyu Wu(吴宏宇), and Shaoze Yan(阎绍泽). Chin. Phys. B, 2022, 31(3): 034601.
[2] Rolling velocity and relative motion of particle detector in local granular flow
Ran Li(李然), Bao-Lin Liu(刘宝林), Gang Zheng(郑刚), and Hui Yang(杨晖). Chin. Phys. B, 2022, 31(11): 114501.
[3] Influence of uniform momentum zones on frictional drag within the turbulent boundary layer
Kangjun Wang(王康俊) and Nan Jiang(姜楠). Chin. Phys. B, 2021, 30(3): 034703.
[4] Internal friction behavior of Zr59Fe18Al10Ni10Nb3 metallic glass under different aging temperatures
Israa Faisal Ghazi, Israa Meften Hashim, Aravindhan Surendar, Nalbiy Salikhovich Tuguz, Aseel M. Aljeboree, Ayad F. Alkaim, and Nisith Geetha. Chin. Phys. B, 2021, 30(2): 026401.
[5] Influence of external load on friction coefficient of Fe-polytetrafluoroethylene
Xiu-Hong Hao(郝秀红), Deng Pan(潘登), Ze-Yang Zhang(张泽洋), Shu-Qiang Wang(王树强), Yu-Jin Gao(高玉金), Da-Peng Gu(谷大鹏). Chin. Phys. B, 2020, 29(4): 046802.
[6] Influence of wall friction on granular column
Yang-Yang Yang(杨阳阳), Sheng Zhang(张晟), Ping Lin(林平), Jiang-Feng Wan(万江锋), Lei Yang(杨磊), Shurong Ding(丁淑蓉). Chin. Phys. B, 2019, 28(1): 018104.
[7] Jamming of packings of frictionless particles with and without shear
Wen Zheng(郑文), Shiyun Zhang(张世允), Ning Xu(徐宁). Chin. Phys. B, 2018, 27(6): 066102.
[8] Some new advance on the research of stochastic non-smooth systems
Wei Xu(徐伟), Liang Wang(王亮), Jinqian Feng(冯进钤), Yan Qiao(乔艳), Ping Han(韩平). Chin. Phys. B, 2018, 27(11): 110503.
[9] Uphill anomalous transport in a deterministic system with speed-dependent friction coefficient
Wei Guo(郭伟), Lu-Chun Du(杜鲁春), Zhen-Zhen Liu(刘真真), Hai Yang(杨海), Dong-Cheng Mei(梅冬成). Chin. Phys. B, 2017, 26(1): 010502.
[10] Complex dynamics of an archetypal self-excited SD oscillator driven by moving belt friction
Zhi-Xin Li(李志新), Qing-Jie Cao(曹庆杰), Léger Alain. Chin. Phys. B, 2016, 25(1): 010502.
[11] Room temperature damping correlated to the microstructures in Cu-20.4Al-8.7Mn
Hao Gang-Ling (郝刚领), Wang Xin-Fu (王新福), Wang Hui (王辉), Li Xian-Yu (李先雨). Chin. Phys. B, 2015, 24(6): 066104.
[12] Resonant behavior of stochastic oscillations of general relativistic disks driven by a memory-damped friction
Wang Zhi-Yun (汪志云), Chen Pei-Jie (陈培杰), Zhang Liang-Ying (张良英). Chin. Phys. B, 2015, 24(5): 059801.
[13] Frequency-dependent friction in pipelines
Jiang Dan (蒋丹), Li Song-Jing (李松晶), Yang Ping (杨平), Zhao Tian-Yang (赵天扬). Chin. Phys. B, 2015, 24(3): 034701.
[14] Analysis of composite material interface crack face contact and friction effects using a new node-pairs contact algorithm
Zhong Zhi-Peng (钟志鹏), He Yu-Bo (何郁波), Wan Shui (万水). Chin. Phys. B, 2014, 23(6): 064601.
[15] Measurement of the friction coefficient of a fluctuating contact line using an AFM-based dual-mode mechanical resonator
Guo Shuo (郭硕), Xiong Xiao-Min (熊小敏), Xu Zu-Li (徐祖力), Shen Ping (沈平), Tong Penger (童彭尔). Chin. Phys. B, 2014, 23(11): 116802.
No Suggested Reading articles found!