CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Jamming of packings of frictionless particles with and without shear |
Wen Zheng(郑文), Shiyun Zhang(张世允), Ning Xu(徐宁) |
Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Soft Matter Chemistry of Chinese Academy of Sciences, and Department of Physics, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract By minimizing the enthalpy of packings of frictionless particles, we obtain jammed solids at desired pressures and hence investigate the jamming transition with and without shear. Typical scaling relations of the jamming transition are recovered in both cases. In contrast to systems without shear, shear-driven jamming transition occurs at a higher packing fraction and the jammed solids are more rigid with an anisotropic force network. Furthermore, by introducing the macro-friction coefficient, we propose an explanation of the packing fraction gap between sheared and non-sheared systems at fixed pressure.
|
Received: 06 March 2018
Revised: 04 April 2018
Accepted manuscript online:
|
PACS:
|
61.43.Bn
|
(Structural modeling: serial-addition models, computer simulation)
|
|
63.50.Lm
|
(Glasses and amorphous solids)
|
|
61.43.-j
|
(Disordered solids)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.11702289,11734014,and 11574278) and the Anhui Provincial Natural Science Foundation (Grant No.1708085QA07). |
Corresponding Authors:
Ning Xu
E-mail: ningxu@ustc.edu.cn
|
Cite this article:
Wen Zheng(郑文), Shiyun Zhang(张世允), Ning Xu(徐宁) Jamming of packings of frictionless particles with and without shear 2018 Chin. Phys. B 27 066102
|
[1] |
Liu A J and Nagel S R 1998 Nature 396 21
|
[2] |
O'Hern C S, Silbert L E, Liu A J and Nagel S R 2003 Phys. Rev. E 68 011306
|
[3] |
Zheng W, Shi Y and Xu N 2015 Sci. China-Chem. 58 1013
|
[4] |
Zheng W and Xu N 2017 Bull. Am. Phys. Soc. 62 1
|
[5] |
Lin J and Zheng W 2017 Phys. Rev. E 96 033002
|
[6] |
Goodrich C P, Liu A J and Nagel S R 2014 Nat. Phys. 10 578
|
[7] |
Heussinger C and Barrat J L 2009 Phys. Rev. Lett. 102 218303
|
[8] |
Olsson P and Teitel S 2007 Phys. Rev. Lett. 99 178001
|
[9] |
Vagberg D, Valdez-Balderas D, Moore M A, Olsson P and Teitel S 2011 Phys. Rev. E 83 030303
|
[10] |
Wyart M, Nagel S R and Witten T A 2005 Europhys. Lett. 72 486
|
[11] |
Wyart M, Silbert L E, Nagel S R and Witten T A 2005 Phys. Rev. E 72 051306
|
[12] |
Bouzid M, Trulsson M, Claudin P, Clement E and Andreotti B 2013 Phys. Rev. Lett. 111 238301
|
[13] |
da Cruz F, Emam S, Prochnow M, Roux J N and Chevoir F 2005 Phys. Rev. E 72 021309
|
[14] |
Fan M, Wang M, Zhang K, Liu Y, Schroers J, Shattuck M D and O'Hern C S 2017 Phys. Rev. E 95 022611
|
[15] |
Goodrich C P, Liu A J and Nagel S R 2012 Phys. Rev. Lett. 109 095704
|
[16] |
Kamien R D and Liu A J 2007 Phys. Rev. Lett. 99 155501
|
[17] |
Kawasaki T, Coslovich D, Ikeda A and Berthier L 2015 Phys. Rev. E 91 012203
|
[18] |
Wang M and Brady J F 2015 Phys. Rev. Lett. 115 158301
|
[19] |
Liu H, Xie X and Xu N 2014 Phys. Rev. Lett. 112 145502
|
[20] |
Xu N, Blawzdziewicz J and O'Hern C S 2005 Phys. Rev. E 71 061306
|
[21] |
Liao Q and Xu N 2018 Soft Matter 14 853
|
[22] |
Tong H, Tan P and Xu N 2015 Sci. Rep. 5 15378
|
[23] |
Inagaki S, Otsuki M and Sasa S 2011 Eur. Phys. J. E 34 124
|
[24] |
Ozawa M, Kuroiwa T, Ikeda A and Miyazaki K 2012 Phys. Rev. Lett. 109 205701
|
[25] |
Schreck C F, O'Hern C S and Silbert L E 2011 Phys. Rev. E 84 011305
|
[26] |
Vagberg D, Olsson P and Teitel S 2011 Phys. Rev. E 83 031307
|
[27] |
Vagberg D, Olsson P and Teitel S 2016 Phys. Rev. E 93 052902
|
[28] |
Wang L and Xu N 2013 Soft Matter 9 2475
|
[29] |
Berthier L, Charbonneau P, Jin Y, Parisi G, Seoane B and Zamponi F 2016 Proc. Nat.l Acad. Sci. 113 8397
|
[30] |
Charbonneau P, Kurchan J, Parisi G, Urbani P and Zamponi F 2017 Ann. Rev. Condens. Matter Phys. 8 265
|
[31] |
Chaudhuri P, Berthier L and Sastry S 2010 Phys. Rev. Lett. 104 165701
|
[32] |
Jin Y and Yoshino H 2017 Nat. Commun. 8 14935.
|
[33] |
Ozawa M, Coslovich D and Berthier L 2017 SciPost Phys. 3 1
|
[34] |
Urbani P and Zamponi F 2017 Phys. Rev. Lett. 118 038001
|
[35] |
Pica Ciamarra M and Coniglio A 2009 Phys. Rev. Lett. 103 235701
|
[36] |
Boyer F, Guazzelli E and Pouliquen O 2011 Phys. Rev. Lett. 107 188301
|
[37] |
de Bruyn J 2011 Physics 4 1
|
[38] |
Peyneau P E and Roux J N 2008 Phys. Rev. E 78 011307
|
[39] |
Dagois-Bohy S, Tighe B P, Simon J, Henkes S and van Hecke M 2012 Phys. Rev. Lett. 109 095703
|
[40] |
Wang X, Zheng W, Wang L and Xu N 2015 Phys. Rev. Lett. 114 035502
|
[41] |
Zheng W, Liu H and Xu N 2016 Phys. Rev. E 94 062608
|
[42] |
Bitzek E, Koskinen P, Gahler F, Moseler M and Gumbsch P 2006 Phys. Rev. Lett. 97 170201
|
[43] |
Allen M P and Tildesley 1987 Computer simulation of liquids (Oxford:Oxford University Press)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|