Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 066102    DOI: 10.1088/1674-1056/27/6/066102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Jamming of packings of frictionless particles with and without shear

Wen Zheng(郑文), Shiyun Zhang(张世允), Ning Xu(徐宁)
Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Soft Matter Chemistry of Chinese Academy of Sciences, and Department of Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  

By minimizing the enthalpy of packings of frictionless particles, we obtain jammed solids at desired pressures and hence investigate the jamming transition with and without shear. Typical scaling relations of the jamming transition are recovered in both cases. In contrast to systems without shear, shear-driven jamming transition occurs at a higher packing fraction and the jammed solids are more rigid with an anisotropic force network. Furthermore, by introducing the macro-friction coefficient, we propose an explanation of the packing fraction gap between sheared and non-sheared systems at fixed pressure.

Keywords:  jamming      shear      macro-friction      force network  
Received:  06 March 2018      Revised:  04 April 2018      Accepted manuscript online: 
PACS:  61.43.Bn (Structural modeling: serial-addition models, computer simulation)  
  63.50.Lm (Glasses and amorphous solids)  
  61.43.-j (Disordered solids)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos.11702289,11734014,and 11574278) and the Anhui Provincial Natural Science Foundation (Grant No.1708085QA07).

Corresponding Authors:  Ning Xu     E-mail:  ningxu@ustc.edu.cn

Cite this article: 

Wen Zheng(郑文), Shiyun Zhang(张世允), Ning Xu(徐宁) Jamming of packings of frictionless particles with and without shear 2018 Chin. Phys. B 27 066102

[1] Liu A J and Nagel S R 1998 Nature 396 21
[2] O'Hern C S, Silbert L E, Liu A J and Nagel S R 2003 Phys. Rev. E 68 011306
[3] Zheng W, Shi Y and Xu N 2015 Sci. China-Chem. 58 1013
[4] Zheng W and Xu N 2017 Bull. Am. Phys. Soc. 62 1
[5] Lin J and Zheng W 2017 Phys. Rev. E 96 033002
[6] Goodrich C P, Liu A J and Nagel S R 2014 Nat. Phys. 10 578
[7] Heussinger C and Barrat J L 2009 Phys. Rev. Lett. 102 218303
[8] Olsson P and Teitel S 2007 Phys. Rev. Lett. 99 178001
[9] Vagberg D, Valdez-Balderas D, Moore M A, Olsson P and Teitel S 2011 Phys. Rev. E 83 030303
[10] Wyart M, Nagel S R and Witten T A 2005 Europhys. Lett. 72 486
[11] Wyart M, Silbert L E, Nagel S R and Witten T A 2005 Phys. Rev. E 72 051306
[12] Bouzid M, Trulsson M, Claudin P, Clement E and Andreotti B 2013 Phys. Rev. Lett. 111 238301
[13] da Cruz F, Emam S, Prochnow M, Roux J N and Chevoir F 2005 Phys. Rev. E 72 021309
[14] Fan M, Wang M, Zhang K, Liu Y, Schroers J, Shattuck M D and O'Hern C S 2017 Phys. Rev. E 95 022611
[15] Goodrich C P, Liu A J and Nagel S R 2012 Phys. Rev. Lett. 109 095704
[16] Kamien R D and Liu A J 2007 Phys. Rev. Lett. 99 155501
[17] Kawasaki T, Coslovich D, Ikeda A and Berthier L 2015 Phys. Rev. E 91 012203
[18] Wang M and Brady J F 2015 Phys. Rev. Lett. 115 158301
[19] Liu H, Xie X and Xu N 2014 Phys. Rev. Lett. 112 145502
[20] Xu N, Blawzdziewicz J and O'Hern C S 2005 Phys. Rev. E 71 061306
[21] Liao Q and Xu N 2018 Soft Matter 14 853
[22] Tong H, Tan P and Xu N 2015 Sci. Rep. 5 15378
[23] Inagaki S, Otsuki M and Sasa S 2011 Eur. Phys. J. E 34 124
[24] Ozawa M, Kuroiwa T, Ikeda A and Miyazaki K 2012 Phys. Rev. Lett. 109 205701
[25] Schreck C F, O'Hern C S and Silbert L E 2011 Phys. Rev. E 84 011305
[26] Vagberg D, Olsson P and Teitel S 2011 Phys. Rev. E 83 031307
[27] Vagberg D, Olsson P and Teitel S 2016 Phys. Rev. E 93 052902
[28] Wang L and Xu N 2013 Soft Matter 9 2475
[29] Berthier L, Charbonneau P, Jin Y, Parisi G, Seoane B and Zamponi F 2016 Proc. Nat.l Acad. Sci. 113 8397
[30] Charbonneau P, Kurchan J, Parisi G, Urbani P and Zamponi F 2017 Ann. Rev. Condens. Matter Phys. 8 265
[31] Chaudhuri P, Berthier L and Sastry S 2010 Phys. Rev. Lett. 104 165701
[32] Jin Y and Yoshino H 2017 Nat. Commun. 8 14935.
[33] Ozawa M, Coslovich D and Berthier L 2017 SciPost Phys. 3 1
[34] Urbani P and Zamponi F 2017 Phys. Rev. Lett. 118 038001
[35] Pica Ciamarra M and Coniglio A 2009 Phys. Rev. Lett. 103 235701
[36] Boyer F, Guazzelli E and Pouliquen O 2011 Phys. Rev. Lett. 107 188301
[37] de Bruyn J 2011 Physics 4 1
[38] Peyneau P E and Roux J N 2008 Phys. Rev. E 78 011307
[39] Dagois-Bohy S, Tighe B P, Simon J, Henkes S and van Hecke M 2012 Phys. Rev. Lett. 109 095703
[40] Wang X, Zheng W, Wang L and Xu N 2015 Phys. Rev. Lett. 114 035502
[41] Zheng W, Liu H and Xu N 2016 Phys. Rev. E 94 062608
[42] Bitzek E, Koskinen P, Gahler F, Moseler M and Gumbsch P 2006 Phys. Rev. Lett. 97 170201
[43] Allen M P and Tildesley 1987 Computer simulation of liquids (Oxford:Oxford University Press)
[1] High-pressure Raman study of osmium and rhenium up to 200 GPa and pressure dependent elastic shear modulus C44
Jingyi Liu(刘静仪), Yu Tao(陶雨), Chunmei Fan(范春梅), Binbin Wu(吴彬彬), Qiqi Tang(唐琦琪), and Li Lei(雷力). Chin. Phys. B, 2022, 31(3): 037801.
[2] New multiplexed system for synchronous measurement of out-of-plane deformation and two orthogonal slopes
Yonghong Wang(王永红), Xiao Zhang(张肖), Qihan Zhao(赵琪涵), Yanfeng Yao(姚彦峰), Peizheng Yan(闫佩正), and Biao Wang(王标). Chin. Phys. B, 2022, 31(3): 034202.
[3] Broad-band phase retrieval method for transient radial shearing interference using chirp Z transform technique
Fang Xue(薛芳), Ya-Xuan Duan(段亚轩), Xiao-Yi Chen(陈晓义), Ming Li(李铭), Suo-Chao Yuan(袁索超), and Zheng-Shang Da(达争尚). Chin. Phys. B, 2021, 30(8): 084209.
[4] Effect of the particle temperature on lift force of nanoparticle in a shear rarefied flow
Jun-Jie Su(苏俊杰), Jun Wang(王军), and Guo-Dong Xia(夏国栋). Chin. Phys. B, 2021, 30(7): 075101.
[5] Effects of short-range attraction on Jamming transition
Zhenhuan Xu(徐震寰), Rui Wang(王瑞), Jiamei Cui(崔佳梅), Yanjun Liu(刘彦君), and Wen Zheng(郑文). Chin. Phys. B, 2021, 30(6): 066101.
[6] Shear-horizontal transverse-electric seismoelectric waves in cylindrical double layer porous media
Wei-Hao Wang(王伟豪), Xiao-Yan Zhu(朱晓焱), Jin-Xia Liu(刘金霞), and Zhi-Wen Cui(崔志文). Chin. Phys. B, 2021, 30(1): 014301.
[7] Thermal effects and evolution of the defect concentration based on shear modulus relaxation data in a Zr-based metallic glass
Qi Hao(郝奇), Ji-Chao Qiao(乔吉超), E V Goncharova, G V Afonin, Min-Na Liu(刘敏娜), Yi-Ting Cheng(程怡婷), V A Khonik. Chin. Phys. B, 2020, 29(8): 086402.
[8] Ultrasonic beam focusing characteristics of shear-vertical waves for contact-type linear phased array in solid
Yu-Xiang Dai(戴宇翔), Shou-Guo Yan(阎守国), Bi-Xing Zhang(张碧星). Chin. Phys. B, 2020, 29(3): 034304.
[9] Gravity-capillary waves modulated by linear shear flow in arbitrary water depth
Shaofeng Li(李少峰), Jinbao Song(宋金宝), and Anzhou Cao(曹安州). Chin. Phys. B, 2020, 29(12): 124702.
[10] Jamming in confined geometry: Criticality of the jamming transition and implications of structural relaxation in confined supercooled liquids
Jun Liu(柳军), Hua Tong(童华), Yunhuan Nie(聂运欢), and Ning Xu(徐宁). Chin. Phys. B, 2020, 29(12): 126302.
[11] A nonlinear Schrödinger equation for gravity waves slowly modulated by linear shear flow
Shaofeng Li(李少峰), Juan Chen(陈娟), Anzhou Cao(曹安州), Jinbao Song(宋金宝). Chin. Phys. B, 2019, 28(12): 124701.
[12] Schamel equation in an inhomogeneous magnetized sheared flow plasma with q-nonextensive trapped electrons
Shaukat Ali Shan, Qamar-ul-Haque. Chin. Phys. B, 2018, 27(2): 025203.
[13] Preliminary computation of the gap eigenmode of shear Alfvén waves on the LAPD
Lei Chang(苌磊). Chin. Phys. B, 2018, 27(12): 125201.
[14] Numerical simulation of the multiple reversed shear Alfvén eigenmodes associated with the triangularity Alfvén gap
Wenjia Wang(王文家), Deng Zhou(周登), Youjun Hu(胡友俊), Yue Ming(明玥), Baolong Hao(郝保龙). Chin. Phys. B, 2018, 27(12): 125202.
[15] Large magnetic moment at sheared ends of single-walled carbon nanotubes
Jian Zhang(张健), Ya Deng(邓娅), Ting-Ting Hao(郝婷婷), Xiao Hu(胡潇), Ya-Yun Liu(刘雅芸), Zhi-Sheng Peng(彭志盛), Jean Pierre Nshimiyimana, Xian-Nian Chi(池宪念), Pei Wu(武佩), Si-Yu Liu(刘思雨), Zhong Zhang(张忠), Jun-Jie Li(李俊杰), Gong-Tang Wang(王公堂), Wei-Guo Chu(褚卫国), Chang-Zhi Gu(顾长志), Lian-Feng Sun(孙连峰). Chin. Phys. B, 2018, 27(12): 128101.
No Suggested Reading articles found!