Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(1): 010502    DOI: 10.1088/1674-1056/26/1/010502
GENERAL Prev   Next  

Uphill anomalous transport in a deterministic system with speed-dependent friction coefficient

Wei Guo(郭伟)1, Lu-Chun Du(杜鲁春)2, Zhen-Zhen Liu(刘真真)2, Hai Yang(杨海)1, Dong-Cheng Mei(梅冬成)2
1. Department of Physics, Kunming University, Kunming 650214, China;
2. Department of Physics, Yunnan University, Kunming 650091, China
Abstract  We investigate the transport of a deterministic Brownian particle theoretically, which moves in simple one-dimensional, symmetric periodic potentials under the influence of both a time periodic and a static biasing force. The physical system employed contains a friction coefficient that is speed-dependent. Within the tailored parameter regime, the absolute negative mobility, in which a particle can travel in the direction opposite to a constant applied force, is observed. This behavior is robust and can be maximized at two regimes upon variation of the characteristic factor of friction coefficient. Further analysis reveals that this uphill motion is subdiffusion in terms of localization (diffusion coefficient with the form D(t)~t-1 at long times). We also have observed the non-trivially anomalous subdiffusion which is significantly deviated from the localization; whereas most of the downhill motion evolves chaotically, with the normal diffusion.
Keywords:  speed-dependent friction coefficient      anomalous transport      anomalous diffusion  
Received:  12 May 2016      Revised:  08 October 2016      Accepted manuscript online: 
PACS:  05.60.-k (Transport processes)  
  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11547027 and 11505149), the Program for Innovative Research Team (in Science and Technology) in University of Yunnan Province, China, the Science Foundation of Kunming University, China (Grant Nos. YJL15005 and XJL15016), the Academic Rewards for Outstanding Young Doctoral Candidate in Yunnan Province, China, and the Cultivation Foundation for Outstanding Doctoral Dissertation of Yunnan University, China.
Corresponding Authors:  Wei Guo     E-mail:  guoweiphys@163.com

Cite this article: 

Wei Guo(郭伟), Lu-Chun Du(杜鲁春), Zhen-Zhen Liu(刘真真), Hai Yang(杨海), Dong-Cheng Mei(梅冬成) Uphill anomalous transport in a deterministic system with speed-dependent friction coefficient 2017 Chin. Phys. B 26 010502

[1] Jung P, Kissner J G and Hänggi P 1996 Phys. Rev. Lett. 76 3436
[2] Mateos J L 2000 Phys. Rev. Lett. 84 258
[3] Barbi M and Salerno M 2000 Phys. Rev. E 62 1988
[4] Reimann P 2002 Phys. Rep. 361 57
[5] Astumian R D and Hänggi P 2002 Phys. Today 55 33
[6] Borromeo M, Costantini G and Marchesoni F 2002 Phys. Rev. E 65 041110
[7] Eichhorn R, Reimann P and Hänggi P 2002 Phys. Rev. Lett. 88 190601
[8] Mateos J L 2003 Physica A 325 92
[9] Gommers R, Douglas P, Bergamini S, Goonasekera M, Jones P H and Renzoni F 2005 Phys. Rev. Lett. 94 143001
[10] Alatriste F R and Mateos J L 2007 Physica A 384 223
[11] Lindenberg K, Sancho J M, Lacasta A M and Sokolov I M 2007 Phys. Rev. Lett. 98 020602
[12] Kenfack A, Sweetnam S M and Pattanayak A K 2007 Phys. Rev. E 75 056215
[13] Kostur M, Machura L, Talkner P, Hänggi P and Luczka J 2008 Phys. Rev. B 77 104509
[14] Speer D, Eichhorn R and Reimann P 2007 Europhys. Lett. 79 10005
[15] Speer D, Eichhorn R and Reimann P 2007 Phys. Rev. E 76 051110
[16] Hänggi P and Marchesoni F 2009 Rev. Mod. Phys. 81 387
[17] Denisov S, Flach S and Hänggi P 2014 Phys. Rep. 538 77
[18] Arzola A V, Volke-Sepúlveda K and Mateos J L 2011 Phys. Rev. Lett. 106 168104
[19] Du L C and Mei D C 2012 Phys. Rev. E 85 011148
[20] Guo W, Du L C and Mei D C 2014 J. Stat. Mech. 2014 P04025
[21] Mulhern C 2013 Phys. Rev. E 88 022906
[22] Dandogbessi B S and Kenfack A 2015 Phys. Rev. E 92 062903
[23] Schimansky-Geier L, Mieth M, Rosé H and Malchow H 1995 Phys. Lett. A 207 140
[24] Schweitzer F, Ebeling W and Tilch B 1998 Phys. Rev. Lett. 80 5044
[25] Schweitzer F, Tilch B and Ebeling W 2000 Eur. Phys. J. B 14 157
[26] Lindner B 2007 New J. Phys. 9 136
[27] Lindner B and Nicola E M 2008 Phys. Rev. Lett. 101 190603
[28] Fiasconaro A, Ebeling W and Gudowska-Nowak E 2008 Eur. Phys. J. B 65 403
[29] Romanczuk P, Bär M, Ebeling W, Lindner B and Schimansky-Geier L 2012 Eur. Phys. J-Spec. Top. 202 1
[30] Burada P S and Lindner B 2012 Phys. Rev. E 85 032102
[31] Wu D and Zhu S Q 2012 Phys. Rev. E 85 061101
[32] Ai B Q, Chen Q Y, He Y F, Li F G and Zhong W R 2013 Phys. Rev. E 88 062129
[33] Ghosh P K, Misko V R, Marchesoni F and Nori F 2013 Phys. Rev. Lett. 110 268301
[34] Ghosh P K, Hänggi P, Marchesoni F and Nori F 2014 Phys. Rev. E 89 062115
[35] Guo W, Wang C J, Du L C and Mei D C 2013 Physica A 392 4210
[36] Rayleigh J W S 1894 The Theory of Sound (London:Mac-Millan)
[37] Helmholtz H 1954 On the Sensations of Tone (New York:Dover)
[38] Schienbein M and Gruler H 1993 Bull. Math. Biol. 55 585
[39] Cates M E 2012 Rep. Prog. Phys. 75 042601
[40] Sarracino A 2013 Phys. Rev. E 88 052124
[41] Risken H 1989 The Fokker-Planck Equation, 2nd edn. (Berlin:Springer)
[42] Sancho J M, Lacasta A M, Lindenberg K, Sokolov I M and Romero A H 2004 Phys. Rev. Lett. 92 250601
[43] Luo L and Tang L H 2014 Chin. Phys. B 23 070514
[44] Khoury M, Lacasta A M, Sancho J M and Lindenberg K 2011 Phys. Rev. Lett. 106 090602
[45] Simon M S, Sancho J M and Lindenberg K 2013 Phys. Rev. E 88 062105
[46] Larrondo H A, Family F and Arizmendi C M 2002 Physica A 303 67
[47] Hennig D, Schimansky-Geier L and Hänggi P 2009 Phys. Rev. E 79 041117
[48] Klages R, Radons G and Sokolov I M 2008 Anomalous Transport:Foundations and Applications (Weinheim:Wiley-VCH)
[49] Wang B, Anthony S M, Bae S C and Granick S 2009 Proc. Natl. Acad. Sci. USA 106 15160
[50] Korabel N and Klages R 2002 Phys. Rev. Lett. 89 214102
[51] Korabel N and Klages R 2004 Physica D 187 66
[52] Caspi A, Granek R and Elbaum M 2000 Phys. Rev. Lett. 85 5655
[53] Mashanova A, Oliver T H and Jansen V A A 2010 J. R. Soc. Interface 7 199
[54] González M C, Hidalgo C A and Barabási A L 2008 Nature 453 779
[1] Anomalous diffusion in branched elliptical structure
Kheder Suleiman, Xuelan Zhang(张雪岚), Erhui Wang(王二辉),Shengna Liu(刘圣娜), and Liancun Zheng(郑连存). Chin. Phys. B, 2023, 32(1): 010202.
[2] Diffusion dynamics in branched spherical structure
Kheder Suleiman, Xue-Lan Zhang(张雪岚), Sheng-Na Liu(刘圣娜), and Lian-Cun Zheng(郑连存). Chin. Phys. B, 2022, 31(11): 110202.
[3] Ergodicity recovery of random walk in heterogeneous disordered media
Liang Luo(罗亮), Ming Yi(易鸣). Chin. Phys. B, 2020, 29(5): 050503.
[4] Anisotropic transport of microalgae Chlorella vulgaris in microfluidic channel
Nur Izzati Ishak, S V Muniandy, Vengadesh Periasamy, Fong-Lee Ng, Siew-Moi Phang. Chin. Phys. B, 2017, 26(8): 088203.
[5] Computational analysis of the roles of biochemical reactions in anomalous diffusion dynamics
Naruemon Rueangkham, Charin Modchang. Chin. Phys. B, 2016, 25(4): 048201.
[6] Pattern formation in superdiffusion Oregonator model
Fan Feng(冯帆), Jia Yan(闫佳), Fu-Cheng Liu(刘富成), Ya-Feng He(贺亚峰). Chin. Phys. B, 2016, 25(10): 104702.
[7] Sub-diffusive scaling with power-law trapping times
Luo Liang (罗亮), Tang Lei-Han (汤雷翰). Chin. Phys. B, 2014, 23(7): 070514.
[8] Environment-dependent continuous time random walk
Lin Fang(林方) and Bao Jing-Dong(包景东). Chin. Phys. B, 2011, 20(4): 040502.
No Suggested Reading articles found!