|
|
Uphill anomalous transport in a deterministic system with speed-dependent friction coefficient |
Wei Guo(郭伟)1, Lu-Chun Du(杜鲁春)2, Zhen-Zhen Liu(刘真真)2, Hai Yang(杨海)1, Dong-Cheng Mei(梅冬成)2 |
1. Department of Physics, Kunming University, Kunming 650214, China; 2. Department of Physics, Yunnan University, Kunming 650091, China |
|
|
Abstract We investigate the transport of a deterministic Brownian particle theoretically, which moves in simple one-dimensional, symmetric periodic potentials under the influence of both a time periodic and a static biasing force. The physical system employed contains a friction coefficient that is speed-dependent. Within the tailored parameter regime, the absolute negative mobility, in which a particle can travel in the direction opposite to a constant applied force, is observed. This behavior is robust and can be maximized at two regimes upon variation of the characteristic factor of friction coefficient. Further analysis reveals that this uphill motion is subdiffusion in terms of localization (diffusion coefficient with the form D(t)~t-1 at long times). We also have observed the non-trivially anomalous subdiffusion which is significantly deviated from the localization; whereas most of the downhill motion evolves chaotically, with the normal diffusion.
|
Received: 12 May 2016
Revised: 08 October 2016
Accepted manuscript online:
|
PACS:
|
05.60.-k
|
(Transport processes)
|
|
05.45.-a
|
(Nonlinear dynamics and chaos)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11547027 and 11505149), the Program for Innovative Research Team (in Science and Technology) in University of Yunnan Province, China, the Science Foundation of Kunming University, China (Grant Nos. YJL15005 and XJL15016), the Academic Rewards for Outstanding Young Doctoral Candidate in Yunnan Province, China, and the Cultivation Foundation for Outstanding Doctoral Dissertation of Yunnan University, China. |
Corresponding Authors:
Wei Guo
E-mail: guoweiphys@163.com
|
Cite this article:
Wei Guo(郭伟), Lu-Chun Du(杜鲁春), Zhen-Zhen Liu(刘真真), Hai Yang(杨海), Dong-Cheng Mei(梅冬成) Uphill anomalous transport in a deterministic system with speed-dependent friction coefficient 2017 Chin. Phys. B 26 010502
|
[1] |
Jung P, Kissner J G and Hänggi P 1996 Phys. Rev. Lett. 76 3436
|
[2] |
Mateos J L 2000 Phys. Rev. Lett. 84 258
|
[3] |
Barbi M and Salerno M 2000 Phys. Rev. E 62 1988
|
[4] |
Reimann P 2002 Phys. Rep. 361 57
|
[5] |
Astumian R D and Hänggi P 2002 Phys. Today 55 33
|
[6] |
Borromeo M, Costantini G and Marchesoni F 2002 Phys. Rev. E 65 041110
|
[7] |
Eichhorn R, Reimann P and Hänggi P 2002 Phys. Rev. Lett. 88 190601
|
[8] |
Mateos J L 2003 Physica A 325 92
|
[9] |
Gommers R, Douglas P, Bergamini S, Goonasekera M, Jones P H and Renzoni F 2005 Phys. Rev. Lett. 94 143001
|
[10] |
Alatriste F R and Mateos J L 2007 Physica A 384 223
|
[11] |
Lindenberg K, Sancho J M, Lacasta A M and Sokolov I M 2007 Phys. Rev. Lett. 98 020602
|
[12] |
Kenfack A, Sweetnam S M and Pattanayak A K 2007 Phys. Rev. E 75 056215
|
[13] |
Kostur M, Machura L, Talkner P, Hänggi P and Luczka J 2008 Phys. Rev. B 77 104509
|
[14] |
Speer D, Eichhorn R and Reimann P 2007 Europhys. Lett. 79 10005
|
[15] |
Speer D, Eichhorn R and Reimann P 2007 Phys. Rev. E 76 051110
|
[16] |
Hänggi P and Marchesoni F 2009 Rev. Mod. Phys. 81 387
|
[17] |
Denisov S, Flach S and Hänggi P 2014 Phys. Rep. 538 77
|
[18] |
Arzola A V, Volke-Sepúlveda K and Mateos J L 2011 Phys. Rev. Lett. 106 168104
|
[19] |
Du L C and Mei D C 2012 Phys. Rev. E 85 011148
|
[20] |
Guo W, Du L C and Mei D C 2014 J. Stat. Mech. 2014 P04025
|
[21] |
Mulhern C 2013 Phys. Rev. E 88 022906
|
[22] |
Dandogbessi B S and Kenfack A 2015 Phys. Rev. E 92 062903
|
[23] |
Schimansky-Geier L, Mieth M, Rosé H and Malchow H 1995 Phys. Lett. A 207 140
|
[24] |
Schweitzer F, Ebeling W and Tilch B 1998 Phys. Rev. Lett. 80 5044
|
[25] |
Schweitzer F, Tilch B and Ebeling W 2000 Eur. Phys. J. B 14 157
|
[26] |
Lindner B 2007 New J. Phys. 9 136
|
[27] |
Lindner B and Nicola E M 2008 Phys. Rev. Lett. 101 190603
|
[28] |
Fiasconaro A, Ebeling W and Gudowska-Nowak E 2008 Eur. Phys. J. B 65 403
|
[29] |
Romanczuk P, Bär M, Ebeling W, Lindner B and Schimansky-Geier L 2012 Eur. Phys. J-Spec. Top. 202 1
|
[30] |
Burada P S and Lindner B 2012 Phys. Rev. E 85 032102
|
[31] |
Wu D and Zhu S Q 2012 Phys. Rev. E 85 061101
|
[32] |
Ai B Q, Chen Q Y, He Y F, Li F G and Zhong W R 2013 Phys. Rev. E 88 062129
|
[33] |
Ghosh P K, Misko V R, Marchesoni F and Nori F 2013 Phys. Rev. Lett. 110 268301
|
[34] |
Ghosh P K, Hänggi P, Marchesoni F and Nori F 2014 Phys. Rev. E 89 062115
|
[35] |
Guo W, Wang C J, Du L C and Mei D C 2013 Physica A 392 4210
|
[36] |
Rayleigh J W S 1894 The Theory of Sound (London:Mac-Millan)
|
[37] |
Helmholtz H 1954 On the Sensations of Tone (New York:Dover)
|
[38] |
Schienbein M and Gruler H 1993 Bull. Math. Biol. 55 585
|
[39] |
Cates M E 2012 Rep. Prog. Phys. 75 042601
|
[40] |
Sarracino A 2013 Phys. Rev. E 88 052124
|
[41] |
Risken H 1989 The Fokker-Planck Equation, 2nd edn. (Berlin:Springer)
|
[42] |
Sancho J M, Lacasta A M, Lindenberg K, Sokolov I M and Romero A H 2004 Phys. Rev. Lett. 92 250601
|
[43] |
Luo L and Tang L H 2014 Chin. Phys. B 23 070514
|
[44] |
Khoury M, Lacasta A M, Sancho J M and Lindenberg K 2011 Phys. Rev. Lett. 106 090602
|
[45] |
Simon M S, Sancho J M and Lindenberg K 2013 Phys. Rev. E 88 062105
|
[46] |
Larrondo H A, Family F and Arizmendi C M 2002 Physica A 303 67
|
[47] |
Hennig D, Schimansky-Geier L and Hänggi P 2009 Phys. Rev. E 79 041117
|
[48] |
Klages R, Radons G and Sokolov I M 2008 Anomalous Transport:Foundations and Applications (Weinheim:Wiley-VCH)
|
[49] |
Wang B, Anthony S M, Bae S C and Granick S 2009 Proc. Natl. Acad. Sci. USA 106 15160
|
[50] |
Korabel N and Klages R 2002 Phys. Rev. Lett. 89 214102
|
[51] |
Korabel N and Klages R 2004 Physica D 187 66
|
[52] |
Caspi A, Granek R and Elbaum M 2000 Phys. Rev. Lett. 85 5655
|
[53] |
Mashanova A, Oliver T H and Jansen V A A 2010 J. R. Soc. Interface 7 199
|
[54] |
González M C, Hidalgo C A and Barabási A L 2008 Nature 453 779
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|