Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(11): 110503    DOI: 10.1088/1674-1056/27/11/110503
Special Issue: SPECIAL TOPIC — 80th Anniversary of Northwestern Polytechnical University (NPU)
TOPICAL REVIEW—80th Anniversary of Northwestern Polytechnical University (NPU) Prev   Next  

Some new advance on the research of stochastic non-smooth systems

Wei Xu(徐伟)1, Liang Wang(王亮)1, Jinqian Feng(冯进钤)2, Yan Qiao(乔艳)1, Ping Han(韩平)1
1 Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710072, China;
2 School of Science, Xi'an Polytechnical University, Xi'an 710048, China
Abstract  

Due to the extensive applicability in real life, the non-smooth system with random factors attracted much attention in past two decades. A lot of methods and techniques have been proposed to research these systems by scholars. In this paper, we will summarize some new research advance on the stochastic non-smooth systems. The existing results about the stochastic vibro-impact system, the stochastic friction system, and the stochastic hysteretic system are introduced respectively. Some conclusions and outlook are given at the end.

Keywords:  non-smooth system      random factor      vibro-impact system      friction system      hysteretic system  
Received:  16 July 2018      Revised:  19 September 2018      Accepted manuscript online: 
PACS:  05.10.-a (Computational methods in statistical physics and nonlinear dynamics)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  05.45.-a (Nonlinear dynamics and chaos)  
Fund: 

Projected supported by the National Natural Science Foundation of China (Grant No. 11472212), the Natural Science Basic Research Plan in Shaanxi Province, China (Grant No. 2018JM1043), and the Fundamental Research Fund for the Central Universities, China (Grant No. 3102018ZY043).

Corresponding Authors:  Liang Wang     E-mail:  liangwang1129@nwpu.edu.cn

Cite this article: 

Wei Xu(徐伟), Liang Wang(王亮), Jinqian Feng(冯进钤), Yan Qiao(乔艳), Ping Han(韩平) Some new advance on the research of stochastic non-smooth systems 2018 Chin. Phys. B 27 110503

[1] Luo G W and Xie J H 2004 Periodic Motion and Bifurcation of Vibro-impact System (Beijing:Science Press) (in Chinese)
[2] Jin D P and Hu H Y 2005 Impact Vibration and Control (Beijing:Science Press) (in Chinese)
[3] Nayak P R 1972 J. Sound Vib. 22 297
[4] Jing H S and Sheu K C 1990 J. Sound Vib. 141 363
[5] Jing H S and Young M 1990 Earthq. Eng. Struct. D 19 789
[6] Lin S Q and Bapat C N 1993 J. Sound Vib. 163 407
[7] Feng Q and Pfeiffer F 1998 J. Sound Vib. 215 439
[8] Feng Q and He H 2003 Eur. J. Mech. A/Solid 22 267
[9] Luo G W and Xie J H 2001 Physica D 148 183
[10] van de Wouw N, de Kraker A, van Campen D H and Nijmeijer H 2003 Int. J. Nonlin. Mech. 38 767
[11] Huang Z L, Liu Z H and Zhu W Q 2004 J. Sound Vib. 275 223
[12] Dimentberg M F and Iourtchenko D V 2004 Nonlinear Dynam. 36 229
[13] Namachchivaya N S and Park J H 2005 J. Appl. Mech. 72 862
[14] Feng J Q, Xu W, Rong H W and Wang R 2009 Int. J. Nonlin. Mech. 44 51
[15] Feng J Q, Xu W and Wang R 2008 J. Sound Vib. 309 730
[16] Rong H W, Wang X D, Xu W and Fang T 2009 J. Sound Vib. 327 173
[17] Li C, Xu W, Wang L and Li D X 2013 Chin. Phys. B 22 110205
[18] Li C, Xu W, Feng J Q and Wang L 2013 Physica A 392 1269
[19] Gu X D and Zhu W Q 2014 J. Sound Vib. 333 2632
[20] Wang D L, Xu W and Zhao X R 2016 Chaos 26 033103
[21] Zhao X R, Xu W, Yang Y G and Wang X Y 2016 Commun. Nonlinear Sci. 35 166
[22] Wang D L, Xu W, Gu X D and Yang Y G 2016 Nonlinear Dynam. 86 891
[23] Yang G D, Xu W, Gu X D and Huang D M 2016 Chaos Solitons Fract. 87 125
[24] Xiao Y W, Xu W and Wang L 2016 Chaos 26 033110
[25] Yang Y G, Xu W, Sun Y H and Xiao Y W 2017 Commun. Nonlinear Sci. 42 62
[26] Xiao Y W, Xu W and Yang Y G 2016 Nonlinear Dynam 85 1955
[27] Yang G D, Xu W, Jia W T and He M J 2016 Commun. Nonlinear. Sci. 33 19
[28] Wang D L, Xu W, Gu X D and Pei H Q 2016 Int. J. Nonlin. Mech. 86 55
[29] Yang G D, Xu W, Feng J Q and Gu X D 2015 Nonlinear Dynam. 82 1797
[30] Xu W, Yang G D and Yue X L 2016 Acta Phys. Sin. 65 210501(in Chinese)
[31] Liu L, Xu W, Yue X L, Han Q 2017 Chaos Solitons Fract. 104 748
[32] Liu D, Li M and Li J L 2018 Nonlinear Dynam. 91 1261
[33] Xie X F, Li J L, Liu D and Guo R 2017 Acta Mech. 228 1153
[34] Xu M, Wang Y, Jin X L, Huang Z L and Yu T X 2013 Int. J. Nonlin. Mech. 52 26
[35] Xu M, Wang Y, Jin X L and Huang Z L 2014 J. Sound Vib. 333 189
[36] Xu M 2018 Appl. Math. Model. 54 284
[37] Feng J Q, Xu W and Wang R 2006 Acta Phys. Sin. 55 5733(in Chinese)
[38] Li G J, Xu W, Wang L and Feng J Q 2008 Acta Phys. Sin. 57 2107(in Chinese)
[39] Wang L, Xu W, Li G J and Li D X 2009 Chaos Solitons Fract. 41 2075
[40] Wang L, Yue X L, Sun C Y and Xu W 2013 Nonlinear Dynam. 71 597
[41] Wang L, Huang M, Xu W and Jin L M 2018 Nonlinear Dynam. 92 1147
[42] Feng J Q and Xu W 2009 Appl. Math. Comput. 213 577
[43] Xu W, Feng J Q and Rong H W 2009 Nonlinear Anal. Theor. 71 418
[44] Kumar P, Narayanon S and Gupta S 2016 Nonlinear Dynam. 85 439
[45] Huang D M, Xu W, Xie W X and Han Q 2015 Chin. Phys. B 24 040502
[46] de Souza S L T, Caldas I L and Viana R L 2007 Chaos Soliton Fract. 32 74
[47] Wang L, Xu W and Li Y 2008 Chin. Phys. B 17 2446
[48] Matias M A and Guemez 1994 Phys. Rev. Lett. 72 1455
[49] Wang L, Xu W and Li Y 2008 Phys. Lett. A 372 530
[50] Iourtchenko D V and Song L L 2006 Int. J. Nonlin. Mech. 41 447
[51] Lei H, Gan C B and Xie C Y 2010 J. Eng. Mech. 27 1
[52] Gan C B and Lei H 2011 J. Sound Vib. 330 2174
[53] Mo E and Naess A 2009 J. Comput. Nonlin. Dyn. 4 034501
[54] Zhu H T 2014 Int. J. Nonlin. Mech. 65 53
[55] Zhu H T 2015 Nonlinear Dynam. 82 1001
[56] Kumar P, Narayanan S and Gupta S 2017 Int. J. Mech. Sci. 127 103
[57] Wang L, Ma S C, Sun C Y, Jia W T and Xu W 2018 J. Appl. Mech. 85 054502
[58] Hartog J P D 1930 Phil. Mag. 9 801
[59] Ding W C, Zhang Y Q and Zhang Q S 2008 Eng. Mech. 25 10(in Chinese)
[60] Ding Q and Zhai H M 2013 Adv. Mech. 1 112(in Chinese)
[61] Brouwers J T H 1982 Ocean Eng. 3 235
[62] Pollak E and Berezhkovskii A M 1993 J. Chem. Phys. 99 1344
[63] Feng Q and Zhang X 2001 Appl. Math. Mech. 22 956
[64] Feng Q 2003 Comput. Method Appl. M. 192 2339
[65] Feng Q 2008 Int. J. Appl. Math. 1 38
[66] Qiao S, Beloiu D M and Ibrahim R A 2004 Nonlinear Dynam. 36 361
[67] Gaus N and Proppe C 2011 Symposium on Nonlinear Stochastic Dynamics and Control (Dordrecht:Springer)
[68] Wang Y, Jin X L and Huang Z L 2014 The 7th International Conference on Computational Stochastic Mechanics, Santorini
[69] Sun J, Xu W and Lin Z 2018 Commun. Nonlinear Sci. 54 1
[70] Sun J, Xu W and Lin Z 2017 Appl. Math. Mech. 1 010
[71] Sun J Q 1995 J. Sound Vib. 180 785
[72] Baule A, Touchette H and Cohen E G D 2011 Nonlinearity 24 351
[73] Chen Y and Just W 2014 Phys. Rev. E 89 022103
[74] Gennes P G 2005 J. Stat. Phys. 119 953
[75] Tian Y P, Wang Y and Jin X L 2014 Smart Mater. Struct. 23 095001
[76] Green P L, Worden K and Sims N D 2013 J. Sound Vib. 332 4696
[77] Awrejcewicz J and Olejnik P 2005 Appl. Mech. Rev. 58 389
[78] Astrom K J and Wit C C 2008 IEEE Control Syst. Mag. 28 101
[79] Berger E J 2002 Appl. Mech. Rev. 55 535
[80] Olsson H, Astrom K J and Wit C C 1998 Eur. J. Control 4 176
[81] Wang Y, Luan X L, Jin X L and Huang Z L 2016 Arch. Appl. Mech. 86 1827
[82] Jin X L, Wang Y and Huang Z L 2018 Int. J. Nonlin. Mech. 104 1
[83] Spencer B F, Dyke S J, Sain M K and Carlson J D 1997 ASCE J. Eng. Mech. 123 230
[84] Hughes D and Wen J T 1997 Smart Mater. Struct. 6 287
[85] Majima S, Kodama K and Hasegawa T 2001 IEEE T. Contr. Syst. T. 9 54
[86] Yu Y H, Naganathan N and Dukkipati R 2002 Mech. Mach. Theory 37 49
[87] Krasnoselski M A and Pokrovskii A V 1989 Systems with Hysteresis (Berlin:Springer)
[88] Caughey T K 1960 ASME J. Appl. Mech. 27 649
[89] Caughey T K 1971 Adv. Appl. Mech. 11 209
[90] Bouc R 1967 Proceedings of the 4th Conference on Non-linear Oscillation, Prague, Czechoslovakia
[91] Lubarda V, Sumarac D and Krajcinovic D 1993 Eur. J. Mech. A-Solid 12 445
[92] Mayergoyz I D 1991 Mathematical Models of Hysteresis (New York:Springer)
[93] Noori M, Dimentberg M and Hou Z 1995 Probab. Eng. Mech. 10 161
[94] Lin Y K and Cai G Q 1995 Probabilistic Structural Dynamics:Advanced Theory and Applications (New York:McGraw-Hill)
[95] Ni Y Q, Ying Z G, Ko J M and Zhu W Q 2002 Int. J. Nonlin. Mech. 37 1407
[96] Ying Z G, Zhu W Q and Ni Y Q 2002 J. Sound Vib. 254 91
[97] Jin X L, Wang Y and Huang Z L 2015 Soil Dyn. Earthq. Eng. 73 58
[98] Spanos Pol D, ASCE1 F, Cacciola P and Muscolino G 2004 J. Eng. Mech. 130 1257
[99] Wang Y, Ying Z Q and Zhu W Q 2009 J. Sound Vib. 321 976
[100] Xu M, Jin X L, Wang Y and Huang Z L 2014 Acta Mech. Solida Sin. 27 5
[101] Zhu W Q and Lei Y 1988 Nonlinear Stochastic Dynamic Engineering Systems (Berlin:Springer)
[102] Roberts J B 1988 Nonlinear Stochastic Dynamic Engineering Systems (Berlin:Springer)
[103] Zeng Y and Li G 2013 Probab. Eng. Mech. 33 135
[104] Asano K and Iwan W D 1984 Earthq. Eng. Struct. D 12 229
[105] Lutes L D 1970 J. Acoust. Soc. Am. 48 299
[106] Ni Y Q, Ying Z G and Ko J M 2002 ASME J. Appl. Mech. 69 171
[107] Ying Z G, Zhu W Q, Ni Y Q and Ko J M 2002 J. Sound Vib. 254 37
[108] Liu J, Chen L C and Sun J Q 2017 Chin. J. Theor. Appl. Mech. 49 3(in Chinese)
[109] Naess A and Moe V 1996 Int. J. Nonlin. Mech. 31 553
[110] Luciano G M, Dimitris C L and Marcelo A S 2009 Int. J. Solids. Struct. 46 1269
[111] Rosario N M and Bernardo S 2005 J. Appl. Phys. 97 519
[112] Li J and Chen J B 2006 Int. J. Numer. Meth. Eng. 65 882
[113] Yang J N and Wu J C 1995 J. Eng. Mech.-ASCE 121 1330
[114] Yang J N, Agrawal A K and Chen S 1996 Earthq. Eng. Struct. Dyn. 25 1211
[115] Zhu W Q, Ying Z G and Ni Y Q 2000 J. Eng. Mech. 126 10
[116] Wang Y, Ying Z G and Zhu W Q 2009 Probab. Eng. Mech. 24 255
[117] Li X P, Huan R H and Wei D M 2010 Probab. Eng. Mech. 25 245
[118] He W 2018 IEEE T. Contr. Syst. T. 26 2
[119] Li J, Peng Y B and Chen J B 2011 Struct. Eng. Mech. 38 39
[1] Stationary response of colored noise excited vibro-impact system
Jian-Long Wang(王剑龙), Xiao-Lei Leng(冷小磊), and Xian-Bin Liu(刘先斌). Chin. Phys. B, 2021, 30(6): 060501.
[2] Multi-valued responses and dynamic stability of a nonlinear vibro-impact system with a unilateral non-zero offset barrier
Wei Xu(徐伟), Dong-Mei Huang(黄冬梅), Wen-Xian Xie(谢文贤). Chin. Phys. B, 2016, 25(3): 030502.
[3] Stochastic responses of Duffing–Van der Pol vibro-impact system under additive colored noise excitation
Li Chao (李超), Xu Wei (徐伟), Wang Liang (王亮), Li Dong-Xi (李东喜). Chin. Phys. B, 2013, 22(11): 110205.
[4] Resonance response of a single-degree-of-freedom nonlinear vibro-impact system to a narrow-band random parametric excitation
Su Min-Bang (苏敏邦), Rong Hai-Wu (戎海武). Chin. Phys. B, 2011, 20(6): 060501.
[5] Lyapunov exponent calculation of a two-degree-of-freedom vibro-impact system with symmetrical rigid stops
Li Qun-Hong(李群宏) and Tan Jie-Yan(谭洁燕). Chin. Phys. B, 2011, 20(4): 040505.
[6] Dynamical behaviour of a controlled vibro-impact system
Wang Liang(王亮), Xu Wei(徐伟), and Li Ying(李颖) . Chin. Phys. B, 2008, 17(7): 2446-2450.
No Suggested Reading articles found!