Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 064601    DOI: 10.1088/1674-1056/23/6/064601
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Analysis of composite material interface crack face contact and friction effects using a new node-pairs contact algorithm

Zhong Zhi-Peng (钟志鹏)a, He Yu-Bo (何郁波)b, Wan Shui (万水)a
a School of Transportation, Southeast University, Nanjing 210096, China;
b Department of Mathematics, Huaihua University, Huaihua 418008, China
Abstract  A new node-pairs contact algorithm is proposed to deal with a composite material or bi-material interface crack face contact and friction problem (e.g., resistant coating and thermal barrier coatings) subjected to complicated load conditions. To decrease the calculation scale and calculation errors, the local Lagrange multipliers are solved only on a pair of contact nodes using the Jacobi iteration method, and the constraint modification of the tangential multipliers are required. After the calculation of the present node-pairs Lagrange multiplier, it is turned to next contact node-pairs until all node-pairs have finished. Compared with an ordinary contact algorithm, the new local node-pairs contact algorithm is allowed a more precise element on the contact face without the stiffness matrix singularity. The stress intensity factors (SIFs) and the contact region of an infinite plate central crack are calculated and show good agreement with those in the literature. The contact zone near the crack tip as well as its influence on singularity of stress fields are studied. Furthermore, the frictional contacts are also considered and found to have a significant influence on the SIFs. The normalized mode-Ⅱ stress intensity factors  for the friction coefficient decrease by 16% when f changes from 1 to 0.
Keywords:  contact and friction      node-pairs contact algorithm      interface crack      mixed mode loading stress intensity factors  
Received:  05 September 2013      Revised:  29 October 2013      Accepted manuscript online: 
PACS:  46.50.+a (Fracture mechanics, fatigue and cracks)  
  46.55.+d (Tribology and mechanical contacts)  
  72.80.Tm (Composite materials)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB026200) and the National Natural Science Foundation of China (Grant No. 50878048).
Corresponding Authors:  Wan Shui     E-mail:  lanyu421@163.com

Cite this article: 

Zhong Zhi-Peng (钟志鹏), He Yu-Bo (何郁波), Wan Shui (万水) Analysis of composite material interface crack face contact and friction effects using a new node-pairs contact algorithm 2014 Chin. Phys. B 23 064601

[1] Clarkea D R, Oechsnera M and Padture N P 2012 Mas. Bull. 37 891
[2] Wang G H and Zhang Y 2010 Chin. Phys. B 19 127803
[3] Zhang Y K, Kong D J, Feng A X, Lu J Z, Zhang L H and Ge T 2006 Acta Phys. Sin. 55 2897 (in Chinese)
[4] Padture N P, Gell M and Jordan E H 2002 Science 296 280
[5] Evans A G, Mumm D R, Hutchinson J W, Meier G H and Pettit F S 2001 Prog. Mater. Sci. 46 505
[6] Du G, Liu X Y, Xia Z L, Yang J F and Han R Q 2010 Chin. Phys. B 19 057304
[7] He M Y, Hutchinson J W and Evans A G 2011 J. Appl. Mech. 78 041008
[8] Pan H and Yang W T 2003 Chin. Phys. Lett. 20 120
[9] Lotfy K H 2012 Chin. Phys. B 21 014209
[10] Liu Z L, Hu H Y, Fan T Y and Xing X S 2010 Chin. Phys. Lett. 27 106202
[11] Fan T Y and Li X F 2002 Chin. Phys. 11 266
[12] Williams M L and Seismol B 1959 J. Opt. Soc. Am. 49 199
[13] Erdogan F 1965 J. Appl. Mech. 32 403
[14] England A H 1965 J. Appl. Mech. 32 400
[15] Shih C and Asaro R 1989 Mater. Sci. Eng. A 107 145
[16] Comninou M and Schmueser D 1979 J. Appl. Mech. 46 345
[17] Gautesen A K 1993 Int. J. Fract. 60 349
[18] Gautesen A K 1988 J. Appl. Mech. 55 580
[19] van der Zande H D and Grootenboer H J 1986 J. Appl. Mech. 53 573
[20] Lee J and Gao H 1995 Int. J. Numer. Meth. Eng. 38 2465
[21] Giner E, Tur M and Tarancn J E 2010 Int. J. Numer. Meth. Eng. 82 1424
[22] Elguedj T, Gravouil A and Combescure A 2007 Int. J. Numer. Meth. Eng. 71 1569
[23] Zhu B, Wang C G, Cai H S and Cai X 2003 Acta Phys. Sin. 52 1960 (in Chinese)
[24] Dorogoy A and Banks-Sills L 2004 Int. J. Numer. Meth. Eng. 59 1749
[25] Wang C H 1997 Eng. Fract. Mech. 65 77
[26] Laursen T A 2002 Computational Contact and Impact Mechanics (Berlin/Heidelberg: Springer-Verlag) p. 356
[27] Kim J O and Kwak B M 1996 Int. J. Solids Struct. 33 4605
[28] Simo J C and Laursen T A 1992 Comput. Struct. 42 97
[29] Kalarbring A and Bjorkirnan G 1988 Comput. Struct. 30 1185
[30] Nicholas J C, Robert L T and Michael G K 1991 Int. J. Numer. Meth. 32 103
[31] Wang X C 2003 Finite Element Method (Beijing: Tsinghua University Press) pp. 55-65 (in Chinese)
[32] Zienkiewicz O C, Taylor R L and Zhu J Z 2005 The Finite Element Method: Its Basis and Fundamentals, 2nd edn. (New York: Elsevier/Butterworth-Heinemann) pp. 201-220
[33] Chen W H and Tsai P 1986 Comput. Struct. 22 925
[34] Giner E, Sabsabi M and Fuenmayor F J 2011 Eng. Fract. Mech. 78 428
[35] Sun C T and Qian W 1988 Int. J. Fract. 94 371
[1] Anti-plane problem of nano-cracks emanating from a regular hexagonal nano-hole in one-dimensional hexagonal piezoelectric quasicrystals
Dongsheng Yang(杨东升) and Guanting Liu(刘官厅)†. Chin. Phys. B, 2020, 29(10): 104601.
[2] Multi-scale elastoplastic mechanical model and microstructure damage analysis of solid expandable tubular
Hui-Juan Guo(郭慧娟), Ying-Hua Liu(刘应华), Yi-Nao Su(苏义脑), Quan-Li Zhang(张全立), and Guo-Dong Zhan(詹国栋)†. Chin. Phys. B, 2020, 29(10): 104602.
[3] Interaction between many parallel screw dislocations and a semi-infinite crack in a magnetoelectroelastic solid
Xin Lv(吕鑫), Guan-Ting Liu(刘官厅). Chin. Phys. B, 2018, 27(7): 074601.
[4] Interaction between infinitely many dislocations and a semi-infinite crack in one-dimensional hexagonal quasicrystal
Guan-Ting Liu(刘官厅), Li-Ying Yang(杨丽英). Chin. Phys. B, 2017, 26(9): 094601.
[5] The interaction between a screw dislocation and a wedge-shaped crack in one-dimensional hexagonal piezoelectric quasicrystals
Li-Juan Jiang(姜丽娟), Guan-Ting Liu(刘官厅). Chin. Phys. B, 2017, 26(4): 044601.
[6] Mechanics of high-capacity electrodes in lithium-ion batteries
Ting Zhu. Chin. Phys. B, 2016, 25(1): 014601.
[7] Fatigue damage behavior of a surface-mount electronic package under different cyclic applied loads
Ren Huai-Hui (任淮辉), Wang Xi-Shu (王习术). Chin. Phys. B, 2014, 23(4): 044601.
[8] The effect of fractional thermoelasticity on a two-dimensional problem of a mode I crack in a rotating fiber-reinforced thermoelastic medium
Ahmed E. Abouelregal, Ashraf M. Zenkour. Chin. Phys. B, 2013, 22(10): 108102.
[9] Screw dislocations interacting with two asymmetrical interfacial cracks emanating from an elliptical hole
Zeng Xin (曾鑫), Fang Qi-Hong (方棋洪), Liu You-Wen (刘又文), P. H. Wen. Chin. Phys. B, 2013, 22(1): 014601.
[10] Experimental and theoretical analysis of package-on-package structure under three-point bending loading
Jia Su (贾苏), Wang Xi-Shu (王习术), Ren Huai-Hui (任淮辉). Chin. Phys. B, 2012, 21(12): 126201.
[11] Modelling of spall damage in ductile materials and its application to the simulation of plate impact on copper
Zhang Feng-Guo (张凤国), Zhou Hong-Qiang (周洪强), Hu Jun (胡军), Shao Jian-Li (邵建立), Zhang Guang-Ca (张广财), Hong Tao (洪滔), He Bin (何斌). Chin. Phys. B, 2012, 21(9): 094601.
[12] Anisotropic character of atoms in a two-dimensional Frenkel–Kontorova model
Wang Cang-Long(王苍龙), Duan Wen-Shan(段文山), Chen Jian-Min(陈建敏), andShi Yu-Ren(石玉仁) . Chin. Phys. B, 2011, 20(1): 014601.
[13] Exact analytic solutions for an elliptic hole with asymmetric collinear cracks in a one-dimensional hexagonal quasi-crystal
Guo Jun-Hong(郭俊宏) and Liu Guan-Ting(刘官厅). Chin. Phys. B, 2008, 17(7): 2610-2620.
[14] Elastic analysis of a mode II crack in a decagonal quasi-crystal
Li Xian-Fang (李显方), Fan Tian-You (范天佑). Chin. Phys. B, 2002, 11(3): 266-271.
[15] A STATISTICAL THEORY OF CREEP FRACTURE
XU HUI-YING (许汇颖), XING XIU-SAN (邢修山). Chin. Phys. B, 1997, 6(8): 578-588.
No Suggested Reading articles found!