Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(2): 025201    DOI: 10.1088/1674-1056/20/2/025201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Electronic relaxation of deep bulk trap and interface state in ZnO ceramics

Yang Yan(杨雁)a), Li Sheng-Tao(李盛涛) a)†, Ding Can(丁璨)a) , and Cheng Peng-Fei(成鹏飞)b)
a State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China; b School of Science, Xi'an Polytechnic University, Xi'an 710048, China
Abstract  This paper investigates the electronic relaxation of deep bulk trap and interface state in ZnO ceramics based on dielectric spectra measured in a wide range of temperature, frequency and bias, in addition to the steady state response. It discusses the nature of net current flowing over the barrier affected by interface state, and then obtains temperature-dependent barrier height by approximate calculation from steady IV (current–voltage) characteristics. Additional conductance and capacitance arising from deep bulk trap relaxation are calculated based on the displacement of the cross point between deep bulk trap and Fermi level under small AC signal. From the resonances due to deep bulk trap relaxation on dielectric spectra, the activation energies are obtained as 0.22 eV and 0.35 eV, which are consistent with the electronic levels of the main defect interstitial Zn and vacancy oxygen in the depletion layer. Under moderate bias, another resonance due to interface relaxation is shown on the dielectric spectra. The DC-like conductance is also observed in high temperature region on dielectric spectra, and the activation energy is much smaller than the barrier height in steady state condition, which is attributed to the displacement current coming from the shallow bulk trap relaxation or other factors.
Keywords:  ZnO      deep bulk trap      interface state      relaxation  
Received:  25 May 2010      Revised:  03 August 2010      Accepted manuscript online: 
PACS:  52.25.Mq (Dielectric properties)  
  71.15.-m (Methods of electronic structure calculations)  
  77.22.Gm (Dielectric loss and relaxation)  
Fund: Project supported by the National Outstanding Young Investigator Grant of China (Grant No. 50625721) and the National Natural Science Foundation of China (Grant No. 50972118).

Cite this article: 

Yang Yan(杨雁), Li Sheng-Tao(李盛涛), Ding Can(丁璨) , and Cheng Peng-Fei(成鹏飞) Electronic relaxation of deep bulk trap and interface state in ZnO ceramics 2011 Chin. Phys. B 20 025201

[1] Clarke D R 1999 J. Am. Ceram. Soc. 82 485
[2] Gupta T K 1990 J. Am. Ceram. Soc. 73 1817
[3] Eda K 1989 Electrical Insulation Magazine IEEE 5 28
[4] Peng C X, Wang K F and Zhang Y 2009 Chin. Phys. B 18 2072
[5] Wen X M, Ohno N and Zhang Z M 2001 Chin. Phys. 10 874
[6] Pike G E and Seager C H 1979 J. Appl. Phys. 50 3414
[7] Morris W G 1976 J. Vac. Sci. Technol. 13 926
[8] Emtage P R 1977 J. Appl. Phys. 48 4372
[9] Eda K 1978 J. Appl. Phys. 49 2964
[10] Mahan G D, Lionel M L and Philipp H R 1979 J. Appl. Phys. 50 2799
[11] Pike G E 1982 Mater. Res. Soc. Proc. 5 369
[12] Greuter F and Blatter G 1990 Semicond. Sci. Technol. 5 111
[13] Werner J, Ploog K and Queisser H J 1986 Phys. Rev. Lett. 57 1080
[14] Han J, Senos A M R and Mantas P Q 2003 J. Appl. Phys. 93 4097
[15] Cheng P F, Li S T and Zhang L 2008 Appl. Phys. Lett. 93 012902
[16] Blatter G and Greuter F 1986 Phys. Rev. B 33 3952
[17] Levinson L M and Philipp H R 1977 IEEE Transactions on Parts, Hybrids and Packaging PHP-13 338
[18] Levinson L M and Philipp H R 1976 J. Appl. Phys. 47 1117
[19] Levinson L M and Philipp H R 1978 J. Appl. Phys. 49 6142
[20] Alim M, Li S T and Liu F Y 2006 Phys. Stat. Sol. (a) 203 410
[21] Li S T, Yang Y and Zhang L 2009 Chin. Phys. Lett. 26 077201
[22] Li S T, Yang Y and Zhang L 2009 Acta Phys. Sin. 58 264 (in Chinese)
[23] Vincent G, Bois D and Pinard P 1975 J. Appl. Phys. 46 5173
[24] Seager C H and Pike G E 1980 Appl. Phys. Lett. 37 747 endfootnotesize
[1] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[2] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[3] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[4] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[5] Effect of conical intersection of benzene on non-adiabatic dynamics
Duo-Duo Li(李多多) and Song Zhang(张嵩). Chin. Phys. B, 2022, 31(8): 083103.
[6] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[7] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[8] Transient electromagnetically induced transparency spectroscopy of 87Rb atoms in buffer gas
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Zeng-Li Ba(巴曾立), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(7): 073201.
[9] Bias-induced reconstruction of hybrid interface states in magnetic molecular junctions
Ling-Mei Zhang(张令梅), Yuan-Yuan Miao(苗圆圆), Zhi-Peng Cao(曹智鹏), Shuai Qiu(邱帅), Guang-Ping Zhang(张广平), Jun-Feng Ren(任俊峰), Chuan-Kui Wang(王传奎), and Gui-Chao Hu(胡贵超). Chin. Phys. B, 2022, 31(5): 057303.
[10] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[11] Ultrafast proton transfer dynamics of 2-(2'-hydroxyphenyl)benzoxazole dye in different solvents
Simei Sun(孙四梅), Song Zhang(张嵩), Jiao Song(宋娇), Xiaoshan Guo(郭小珊), Chao Jiang(江超), Jingyu Sun(孙静俞), and Saiyu Wang(王赛玉). Chin. Phys. B, 2022, 31(2): 027803.
[12] Boosting the performance of crossed ZnO microwire UV photodetector by mechanical contact homo-interface barrier
Yinzhe Liu(刘寅哲), Kewei Liu(刘可为), Jialin Yang(杨佳霖), Zhen Cheng(程祯), Dongyang Han(韩冬阳), Qiu Ai(艾秋), Xing Chen(陈星), Yongxue Zhu(朱勇学), Binghui Li(李炳辉), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2022, 31(10): 106101.
[13] Three-dimensional vertical ZnO transistors with suspended top electrodes fabricated by focused ion beam technology
Chi Sun(孙驰), Linyuan Zhao(赵林媛), Tingting Hao(郝婷婷), Renrong Liang(梁仁荣), Haitao Ye(叶海涛), Junjie Li(李俊杰), and Changzhi Gu(顾长志). Chin. Phys. B, 2022, 31(1): 016801.
[14] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[15] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
No Suggested Reading articles found!