Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 034703    DOI: 10.1088/1674-1056/abc7a6

Influence of uniform momentum zones on frictional drag within the turbulent boundary layer

Kangjun Wang(王康俊)1 and Nan Jiang(姜楠)1,2,
1 Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China; 2 Tianjin Key Laboratory of Modern Engineering Mechanics, Tianjin 300072, China
Abstract  Based on a set of experimental databases of turbulent boundary layers obtained from particle image velocimetry in the streamwise-wall-normal plane at friction-velocity-based Reynolds number Reτ =612, the influence of uniform momentum zones (UMZs) on the skin-friction drag is investigated. The skin-friction drag is measured by the single-pixel ensemble correlation method. The results show that the velocity fields with the number of UMZs larger than the mean value have a relatively low skin-friction drag, while the velocity fields with the number of UMZs less than the mean value have a relatively high skin-friction drag. By analyzing the statistical characteristics of UMZs, the dynamic correlation between the UMZs and skin-friction drag is explored. The velocity fields with a low number of UMZs present a sweep event. These sweep motions intensify the small-scale Reynolds shear stress in the near-wall region by modulation effects. The enhancement of small-scale Reynolds shear stress is the direct reason for the high skin-friction drag. Increasing the proportion of velocity fields with high UMZs amount may be a direction to reduce the skin-friction drag within the TBL.
Keywords:  turbulent boundary layers      uniform momentum zones      skin-friction drag  
Received:  17 August 2020      Revised:  05 October 2020      Accepted manuscript online:  05 November 2020
PACS: (Drag reduction)  
  47.85.ld (Boundary layer control)  
  47.27.nb (Boundary layer turbulence ?)  
  47.27.De (Coherent structures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11732010, 11972251, 11872272, 11902218, and 11802195) and the National Key R&D Program of China (Grant No. 2018YFC0705300).
Corresponding Authors:  Corresponding author. E-mail:   

Cite this article: 

Kangjun Wang(王康俊) and Nan Jiang(姜楠) Influence of uniform momentum zones on frictional drag within the turbulent boundary layer 2021 Chin. Phys. B 30 034703

1 Meinhart C D and Adrian R J 1995 Phys. Fluids 7 694
2 Adrian R J, Meinhart C D and Tomkins C D 2000 J. Fluid Mech. 422 1
3 Kwon Y S, Philip J, De Silva C M, Hutchins N and Monty J P 2014 J. Fluid Mech. 751 228
4 Eisma J, Westerweel J, Ooms G and Elsinga G E 2015 Phys. Fluids 27 055103
5 De Silva C M, Hutchins N and Marusic I 2016 J. Fluid Mech. 786 309
6 Townsend A A1980 The Structure of Turbulent Shear Flow 2nd edn (Cambridge: Cambridge University Press)
7 Perry A E and Chong M S 1982 J. Fluid Mech. 119 173
8 Marusic I and Perry A E 1995 J. Fluid Mech. 298 389
9 Perry A E and Marusic I 1995 J. Fluid Mech. 298 361
10 Laskari A, R de Kat, R J Hearst and B Ganapathisubramani 2018 J. Fluid Mech. 842 554
11 Baars W J, K M Talluru, N Hutchins and I Marusic 2015 Exps. Fluids 56 10
12 Lang S S, Geng X G and Zang D Y 2014 Acta Phys. Sin. 63 084704 (in Chinese)
13 Mei D J, Fan BC, Chen Y H and Ye J F 2010 Acta Phys. Sin. 59 8335 (in Chinese)
14 Han Y, Zhang H, Fan B C, Li J, Jiang D W and Zhao Z J 2017 Chin. Phys. B 26 084704
15 Li S, Jiang N, Yang S Q, Huang Y X and Wu Y H 2018 Chin. Phys. B 27 104701
16 Li S, Jiang N and Yang S Q 2019 Acta Phys. Sin. 68 074702 (in Chinese)
17 Hutchins N, Monty J P, Ganapathisubramani B, Ng H C H and Marusic I 2011 J. Fluid Mech. 673 255
18 Hwang J and Sung H J 2017 J. Fluid Mech. 829 751
19 Bai H L, Y Zhou, W G Zhang, S J Xu, Y Wang and R A Antonia 2014 J. Fluid Mech. 750 316
20 Tian H P, Zhang J X, Jiang N and Yao Z H 2015 Exp. Therm. Fluid Sci 69 27
21 Zheng X B, Jiang N and Zhang H 2016 Chin. Phys. B 25 014703
22 Bai J X, Jiang N, Zheng X B, Tang Z Q, Wang K J and Cui X T 2018 Chin. Phys. B 27 074701
23 Jiang D W, Zhang H, Fan B H and Wang A H 2019 Chin. Phys. B 28 054701
24 Westerweel J, Geelhoed P F and Lindken R 2004 Exps. Fluids 37 375
25 K\"ahler C J, Scholz U and Ortmanns J 2006 Exp. Fluids 41 327
26 Wang J, Pan C and Wang J 2020 Phys. Rev. Fluids 5 074605
27 Shen J, Pan C and Wang J 2014 Sci. Chin.-Phys. Mech. Astron. 57 1352
28 Clauser F H 1954 J. Aero. Sci 21 91
29 Schlatter P and R \"Orl\"u 2010 J. Fluid Mech. 659 116
30 Chauhan K, Philip J, De Silva C M, Hutchins N and Marusic I 2014 J. Fluid Mech. 742 119
31 Chauhan K A, Monkewitz P A and Nagib H M 2009 Fluid Dyn. Res. 41 021404
32 De Silva C M, Hutchins N and Marusic I 19th Australasian Fluid Mechanics Conference, December 8-11, 2014, Melbourne, Australia
33 Adrian R J 2007 Phys. Fluids 19 041301
34 Fukagata K, Iwamoto K and Kasagi N 2002 Phys. Fluids 14 13
35 Hutchins N and Marusic I 2007 Phil. Trans. R. Soc. Lond. A 365 647
[1] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[2] Effects of single synthetic jet on turbulent boundary layer
Jin-Hao Zhang(张津浩), Biao-Hui Li(李彪辉), Yu-Fei Wang(王宇飞), and Nan Jiang(姜楠). Chin. Phys. B, 2022, 31(7): 074702.
[3] Experimental investigation on drag reduction in a turbulent boundary layer with a submerged synthetic jet
Biao-Hui Li(李彪辉), Kang-Jun Wang(王康俊), Yu-Fei Wang(王宇飞), and Nan Jiang(姜楠). Chin. Phys. B, 2022, 31(2): 024702.
[4] Effect of high-or low-speed fluctuations on the small-scale bursting events in an active control experiment
Xiao-Tong Cui(崔晓通), Nan Jiang(姜楠), and Zhan-Qi Tang(唐湛棋). Chin. Phys. B, 2021, 30(1): 014702.
[5] Direct numerical simulation on relevance of fluctuating velocities and drag reduction in turbulent channel flow with spanwise space-dependent electromagnetic force
Dai-Wen Jiang(江代文), Hui Zhang(张辉), Bao-Chun Fan(范宝春), An-Hua Wang(王安华). Chin. Phys. B, 2019, 28(5): 054701.
[6] Drag reduction characteristics of heated spheres falling into water
Jia-Chuan Li(李佳川), Ying-Jie Wei(魏英杰), Cong Wang(王聪), Wei-Xue Xia(夏维学). Chin. Phys. B, 2018, 27(12): 124703.
[7] Coherent structures over riblets in turbulent boundary layer studied by combining time-resolved particle image velocimetry (TRPIV), proper orthogonal decomposition (POD), and finite-time Lyapunov exponent (FTLE)
Shan Li(李山), Nan Jiang(姜楠), Shaoqiong Yang(杨绍琼), Yongxiang Huang(黄永祥), Yanhua Wu(吴彦华). Chin. Phys. B, 2018, 27(10): 104701.
[8] Active control of wall-bounded turbulence for drag reduction with piezoelectric oscillators
Jian-Xia Bai(白建侠), Nan Jiang(姜楠), Xiao-Bo Zheng(郑小波), Zhan-Qi Tang(唐湛琪), Kang-Jun Wang(王康俊), Xiao-Tong Cui(崔晓通). Chin. Phys. B, 2018, 27(7): 074701.
[9] Mechanism of controlling turbulent channel flow with the effect of spanwise Lorentz force distribution
Yang Han(韩洋), Hui Zhang(张辉), Bao-Chun Fan(范宝春), Jian Li(李健), Dai-Wen Jiang(江代文), Zi-Jie Zhao(赵子杰). Chin. Phys. B, 2017, 26(8): 084704.
[10] Experimental investigation on underwater drag reduction using partial cavitation
Bao Wang(王宝), Jiadao Wang(汪家道), Darong Chen(陈大融), Na Sun(孙娜), Tao Wang(王涛). Chin. Phys. B, 2017, 26(5): 054701.
[11] Predetermined control of turbulent boundary layer with a piezoelectric oscillator
Xiao-Bo Zheng(郑小波), Nan Jiang(姜楠), Hao Zhang(张浩). Chin. Phys. B, 2016, 25(1): 014703.
[12] Influence of polymer additives on turbulent energy cascading in forced homogeneous isotropic turbulence studied by direct numerical simulations
Li Feng-Chen (李凤臣), Cai Wei-Hua (蔡伟华), Zhang Hong-Na (张红娜), Wang Yue (王悦 ). Chin. Phys. B, 2012, 21(11): 114701.
No Suggested Reading articles found!