Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 116802    DOI: 10.1088/1674-1056/23/11/116802
SPECIAL TOPIC—Non-equilibrium phenomena in soft matters Prev   Next  

Measurement of the friction coefficient of a fluctuating contact line using an AFM-based dual-mode mechanical resonator

Guo Shuo (郭硕)a, Xiong Xiao-Min (熊小敏)b, Xu Zu-Li (徐祖力)a, Shen Ping (沈平)a, Tong Penger (童彭尔)a
a Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China;
b Department of Physics and State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
Abstract  A dual-mode mechanical resonator using an atomic force microscope (AFM) as a force sensor is developed. The resonator consists of a long vertical glass fiber with one end glued onto a rectangular cantilever beam and the other end immersed through a liquid-air interface. By measuring the resonant spectrum of the modified AFM cantilever, one is able to accurately determine the longitudinal friction coefficient ζv along the fiber axis associated with the vertical oscillation of the hanging fiber and the traversal friction coefficient ζh perpendicular to the fiber axis associated with the horizontal swing of the fiber around its joint with the cantilever. The technique is tested by measurement of the friction coefficient of a fluctuating (and slipping) contact line between the glass fiber and the liquid interface. The experiment verifies the theory and demonstrates its applications. The dual-mode mechanical resonator provides a powerful tool for the study of the contact line dynamics and the rheological property of anisotropic fluids.
Keywords:  contact line dynamics      atomic force microscope (AFM) resonator      friction coefficient      liquid interfaces  
Received:  30 January 2014      Revised:  17 September 2014      Accepted manuscript online: 
PACS:  68.05.-n (Liquid-liquid interfaces)  
  07.79.-v (Scanning probe microscopes and components)  
  83.10.Mj (Molecular dynamics, Brownian dynamics)  
  83.85.Vb (Small amplitude oscillatory shear (dynamic mechanical analysis))  
Fund: Project supported by the Research Grants Council of Hong Kong, China (Grant Nos. 605013, 604211, and SRFI11/SC02) and the National Natural Science Foundation of China (Grand Nos. 10974259 and 11274391).
Corresponding Authors:  Tong Penger     E-mail:  penger@ust.hk

Cite this article: 

Guo Shuo (郭硕), Xiong Xiao-Min (熊小敏), Xu Zu-Li (徐祖力), Shen Ping (沈平), Tong Penger (童彭尔) Measurement of the friction coefficient of a fluctuating contact line using an AFM-based dual-mode mechanical resonator 2014 Chin. Phys. B 23 116802

[1] Horber J K and Miles M J 2003 Science 302 1002
[2] Yum K, Wang N and Yu M F 2010 Nanoscale 2 363
[3] Roters A, Gelbert M, Schimmel M, Rühe J and Johannsmann D 1997 Phys. Rev. E 56 3256
[4] Roters A, Schimmel M, Rühe J and Johannsmann D 1998 Langmuir 14 3999
[5] Delmas M, Monthioux M and Ondarcuhu T 2011 Phys. Rev. Lett. 106 136102
[6] Rajagopalan R 2000 Colloids and Surfaces A 174 253
[7] Chen G Y, Warmack R J, Thundat T, Allison D P and Huang A 1994 Rev. Sci. Instrum. 65 2532
[8] Sader J E 1998 J. Applied Phys. 84 64
[9] Clarke R J, Jensen O E, Billingham J, Pearson A P and Williams P M 2006 Phys. Rev. Lett. 96 050801
[10] Paul M R and Cross M C 2004 Phys. Rev. Lett. 92 235501
[11] Paul M R, Clark M T and Cross M C 2006 Nanotechnology 17 4502
[12] Ma H L, Jimenez J and Rajagopalan R 2000 Langmuir 16 2254
[13] Mehta A, Cherian S, Hedden D and Thundata T 2001 Appl. Phys. Lett. 78 1637
[14] Xiong X, Guo S, Xu Z, Sheng P and Tong P 2009 Phys. Rev. E 80 061604
[15] Slaughter W S 2002 The Linearized Theory of Elasticity (Boston: Birkhauser)
[16] Butt H J and Jaschke M 1995 Nanotechnology 6 1
[17] Reif F 1985 Fundamentals of Statistical and Thermal Physics (Auckland: McGraw-Hill)
[18] Leal L G 2007 Advanced Transport Phenomena (Cambridge: Cambridge University Press) p. 557
[19] Landau L D and Lifshitz E M 1987 Fluid Mechanics (2nd edn.) (Oxford: Butterworth-Heinemann)
[20] de Gennes P G, Brochard-Wyart F and Quéré D 2004 Capillarity and Wetting Phenomena (New York: Springer) p. 142
[21] Koplik J, Banavar J R andWillemsen J F 1988 Phys. Rev. Lett. 60 1282
[22] Thompson P A and Robbins M O 1989 Phys. Rev. Lett. 63 766
[23] Qian T Z, Wang X P and Sheng P 2004 Phys. Rev. Lett. 93 094501
[24] Qian T Z, Wang X P and Sheng P 2006 J. Fluid Mech. 564 333
[25] Guo S, Gao M, Xiong X M, Wang Y J, Wang X P, Sheng P and Tong P 2013 Phys. Rev. Lett. 111 026101
[26] Guo S, Gao M, Xiong X M, Wang Y J, Wang X P, Sheng P and Tong P 2013 Phys. Rev. Lett. 111 026101 (supplemental material)
[27] Williams W E 1966 J. Fluid Mech. 25 589
[28] Zhang W and Stone H A 1998 J. Fluid Mech. 367 329
[29] Loewenberg M 1993 Phys. Fluids A 5 3004
[1] Mechanism analysis and improved model for stick-slip friction behavior considering stress distribution variation of interface
Jingyu Han(韩靖宇), Jiahao Ding(丁甲豪), Hongyu Wu(吴宏宇), and Shaoze Yan(阎绍泽). Chin. Phys. B, 2022, 31(3): 034601.
[2] Uphill anomalous transport in a deterministic system with speed-dependent friction coefficient
Wei Guo(郭伟), Lu-Chun Du(杜鲁春), Zhen-Zhen Liu(刘真真), Hai Yang(杨海), Dong-Cheng Mei(梅冬成). Chin. Phys. B, 2017, 26(1): 010502.
[3] Experimental determination of interfacial energies for Ag2Al solid solution in the CuAl2--Ag2Al system
Ocak Y, Akbulut S, Keslioglu K, Marasli N, cCadirli E, and Kaya H. Chin. Phys. B, 2009, 18(9): 3952-3959.
[4] Gas flow characteristics in straight silicon microchannels
Ding Ying-Tao (丁英涛), Yao Zhao-Hui (姚朝晖), Shen Meng-Yu (沈孟育). Chin. Phys. B, 2002, 11(9): 869-875.
No Suggested Reading articles found!