Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(12): 127204    DOI: 10.1088/1674-1056/20/12/127204
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

The electrical characteristics of a 4H–silicon carbide metal–insulator–semiconductor structure with Al2O3 as the gate dielectric

Liu Li(刘莉)a)c)† , Yang Yin-Tang(杨银堂) a)c), and Ma Xiao-Hua(马晓华)b)
a School of Microelectronics, Xidian University, Xi'an 710071, Chinab School of Technical Physics, Xidian University, Xi'an 710071, China; c Key Laboratory of Wide Band Gap Semiconductor Materials and Devices of Ministry of Education, Xi'an 710071, China
Abstract  A 4H-silicon carbide metal-insulator-semiconductor structure with ultra-thin Al2O3 as the gate dielectric, deposited by atomic layer deposition on the epitaxial layer of a 4H-SiC (0001) 80N-/N+ substrate, has been fabricated. The experimental results indicate that the prepared ultra-thin Al2O3 gate dielectric exhibits good physical and electrical characteristics, including a high breakdown electrical field of 25 MV/cm, excellent interface properties (1×1014 cm-2) and low gate-leakage current (IG = 1 × 10-3 A/cm-2@Eox = 8 MV/cm). Analysis of the current conduction mechanism on the deposited Al2O3 gate dielectric was also systematically performed. The confirmed conduction mechanisms consisted of Fowler-Nordheim (FN) tunneling, the Frenkel-Poole mechanism, direct tunneling and Schottky emission, and the dominant current conduction mechanism depends on the applied electrical field. When the gate leakage current mechanism is dominated by FN tunneling, the barrier height of SiC/Al2O3 is 1.4 eV, which can meet the requirements of silicon carbide metal-insulator-semiconductor transistor devices.
Keywords:  Al2O3      4H-silicon carbide      metal-insulator-semiconductor capacitor      gate leakage current      C-V characteristics  
Received:  28 March 2011      Revised:  12 October 2011      Accepted manuscript online: 
PACS:  72.80.Sk (Insulators)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
Fund: Project supported by the 2010 School Fundamental Scientific Research Fund of Xidian University (Grant No. K50510250008).

Cite this article: 

Liu Li(刘莉), Yang Yin-Tang(杨银堂), and Ma Xiao-Hua(马晓华) The electrical characteristics of a 4H–silicon carbide metal–insulator–semiconductor structure with Al2O3 as the gate dielectric 2011 Chin. Phys. B 20 127204

[1] De'ak P, Knaup J M, Hornos T, Christoph T, Adam G and Thomas F 2007 J. Phys. D: Appl. Phys. 40 6242
[2] Dang H L and Gudipati 2009 J. Comput. Theor. Nanosci. 6 1305
[3] Puthenkovilakam R and Chang J P 2004 J. Appl. Phys. 96 2701
[4] Liu L J, Yue Y Z, Zhang J C, Ma X H, Dong Z D and Hao Y 2009 Acta Phys. Sin. 58 536 (in Chinese)
[5] Perez-Tomas A, Godignon P and Montserrat J 2006 Appl. Surf. Sci. 253 1741
[6] Mahapatra R, Chakraborty A K and Poollamai N 2007 J. Vac. Sci. Technol. B 25 217
[7] Fissel A, Czernohorsky M and Osten H J 2006 J. Vac. Sci. Technol. B 24 2115
[8] Afanasév V V, Stesmans A and Chen F 2003 Appl. Phys. Lett. 82 922
[9] Wolborski M, Rosen D and Hallen A 2006 Thin Solid Films 515 456
[10] Lipkin L A and Palmour J W 1999 IEEE Trans. ED. 46 525
[11] Xu M, Zhang W and Sun Q Q 2006 The 6th National Surface Engineering Academic Conference 8 474 (in Chinese)
[12] Sze S M and Kwok K NG 2006 Physics of Semiconductor Devices 3rd edn. (New York: Wiley-Interscience) p. 158
[13] Zhang W D, Govoreanu B, Zheng X F and Ruiz D Aguado 2008 IEEE Electron Dev. Lett. 29 1043
[14] Ouisse T, Bécourt N and Jaussaud C 1994 J. Appl. Phys. 75 604
[15] Khairurrijal and Mizubayashi W 2000 Appl. Phys. Lett. 77 3580
[16] Register L F, Rosenbaum E and Yang K 1999 Appl. Phys. Lett. 74 457
[17] Wu Y 2010 Analysis and Modeling of Gate Leakage Current of MOS Devices with High-k Gate Dielectric Master Thesis, Xidian University p. 25 (in Chinese)
[18] Jones M N, Kwon Y W and Norton D P 2005 Appl. Phys. A 81 285
[19] Lin Y J 2010 Synthetic Metals 160 2628
[1] A self-driven photodetector based on a SnS2/WS2 van der Waals heterojunction with an Al2O3 capping layer
Hsiang-Chun Wang(王祥骏), Yuheng Lin(林钰恒), Xiao Liu(刘潇), Xuanhua Deng(邓煊华),Jianwei Ben(贲建伟), Wenjie Yu(俞文杰), Deliang Zhu(朱德亮), and Xinke Liu(刘新科). Chin. Phys. B, 2023, 32(1): 018504.
[2] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[3] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[4] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[5] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[6] Comparative study on characteristics of Si-based AlGaN/GaN recessed MIS-HEMTs with HfO2 and Al2O3 gate insulators
Yao-Peng Zhao(赵垚澎), Chong Wang(王冲), Xue-Feng Zheng(郑雪峰), Xiao-Hua Ma(马晓华), Kai Liu(刘凯), Ang Li(李昂), Yun-Long He(何云龙), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(8): 087304.
[7] Surface passivation in n-type silicon and its application insilicon drift detector
Yiqing Wu(吴怡清), Ke Tao(陶科), Shuai Jiang(姜帅), Rui Jia(贾锐), Ye Huang(黄也). Chin. Phys. B, 2020, 29(3): 037702.
[8] Surface termination effects on the electrical characteristics of La2O3/Al2O3 nanolaminates deposited by atomic layer deposition
Ji-Bin Fan(樊继斌), Shan-Ya Ling(凌山雅), Hong-Xia Liu(刘红侠), Li Duan(段理), Yan Zhang(张研), Ting-Ting Guo(郭婷婷), Xing Wei(魏星), and Qing He(何清)$. Chin. Phys. B, 2020, 29(11): 117701.
[9] Fluorescence spectra of colloidal self-assembled CdSe nano-wire on substrate of porous Al2O3/Au nanoparticles
Xin Zhang(张欣), Li-Ping Shao(邵丽萍), Man Peng(彭嫚), Zhong-Chen Bai(白忠臣), Zheng-Ping Zhang(张正平), Shui-Jie Qin(秦水介). Chin. Phys. B, 2019, 28(6): 068103.
[10] Effect of SiN: Hx passivation layer on the reverse gate leakage current in GaN HEMTs
Sheng Zhang(张昇), Ke Wei(魏珂), Yang Xiao(肖洋), Xiao-Hua Ma(马晓华), Yi-Chuan Zhang(张一川), Guo-Guo Liu(刘果果), Tian-Min Lei(雷天民), Ying-Kui Zheng(郑英奎), Sen Huang(黄森), Ning Wang(汪宁), Muhammad Asif, Xin-Yu Liu(刘新宇). Chin. Phys. B, 2018, 27(9): 097309.
[11] Performance enhancement of ZnO nanowires/PbS quantum dot depleted bulk heterojunction solar cells with an ultrathin Al2O3 interlayer
Shuaipu Zang(臧帅普), Yinglin Wang(王莹琳), Meiying Li(李美莹), Wei Su(苏蔚), Meiqi An(安美琦), Xintong Zhang(张昕彤), Yichun Liu(刘益春). Chin. Phys. B, 2018, 27(1): 018503.
[12] Crystalline silicon surface passivation investigated by thermal atomic-layer-deposited aluminum oxide
Cai-Xia Hou(侯彩霞), Xin-He Zheng(郑新和), Rui Jia(贾锐), Ke Tao(陶科), San-Jie Liu(刘三姐), Shuai Jiang(姜帅), Peng-Fei Zhang(张鹏飞), Heng-Chao Sun(孙恒超), Yong-Tao Li(李永涛). Chin. Phys. B, 2017, 26(9): 098103.
[13] Influences of different oxidants on characteristics of La2O3/Al2O3 nanolaminates deposited by atomic layer deposition
Ji-Bin Fan(樊继斌), Hong-Xia Liu(刘红侠), Li Duan(段理), Yan Zhang(张研), Xiao-Chen Yu(于晓晨). Chin. Phys. B, 2017, 26(6): 067701.
[14] Performance and reliability improvement of La2O3/Al2O3 nanolaminates using ultraviolet ozone post treatment
Ji-Bin Fan(樊继斌), Hong-Xia Liu(刘红侠), Bin Sun(孙斌), Li Duan(段理), Xiao-Chen Yu(于晓晨). Chin. Phys. B, 2017, 26(5): 057702.
[15] Interactions between vacancies and prismatic Σ3 grain boundary in α-Al2O3: First principles study
Fei Wang(王飞), Wen-Sheng Lai(赖文生), Ru-Song Li(李如松), Bin He(何彬), Su-Fen Li(黎素芬). Chin. Phys. B, 2016, 25(6): 066804.
No Suggested Reading articles found!