CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Persistent current in a magnetized Rashba ring |
Zhang Lin(张林)a)b)† and Wang Jun(汪军)a)‡ |
a Department of Physics, Southeast University, Nanjing 210096, China; b Department of Applied Physics, College of Science, Nanjing Forestry University, Nanjing 210037, China |
|
|
Abstract We theoretically study the persistent currents flowing in a Rashba quantum ring subjected to the Rashba spin-orbit interaction. By introducing uniform or nonuniform magnetization into the ring, we find that a nonzero persistent charge current circulates in the ring, which stems from the original equilibrium spin current due to the Rashba spin-orbit interaction. Because of broken time reversal symmetry, the two oppositely flowing spin-up and spin-down charge currents of the equilibrium spin current are no longer equal, and so a net persistent charge current can flow in the system. It is also found that the persistent current can be modulated by the Fermi energy, the Rashba spin-orbit interaction strength and the magnetization in the ring. Moreover, the magnetization perpendicular to the ring plane can optimize the current. The persistent current flowing in the ring is a manifestation of the nonzero equilibrium spin current existing in the ring.
|
Received: 06 April 2011
Revised: 08 August 2011
Accepted manuscript online:
|
PACS:
|
72.25.Dc
|
(Spin polarized transport in semiconductors)
|
|
72.25.Mk
|
(Spin transport through interfaces)
|
|
73.23.Ra
|
(Persistent currents)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 110704032 and 110704033), the Natural Science Foundation of Jiangsu Province of China (Grant No. BK2010416), and the National Basic Research Development Program of China (Grant No. 2009CB945504). |
Cite this article:
Zhang Lin(张林) and Wang Jun(汪军) Persistent current in a magnetized Rashba ring 2011 Chin. Phys. B 20 127203
|
[1] |
Zütic I, Fabian J and Sarma S D 2004 Rev. Mod. Phys. 76 323
|
[2] |
Awschalom D D and Flatté M E 2007 Nat. Phys. 3 153
|
[3] |
Awschalom D D, Loss D and Samarth N 2002 Semiconductor Spintronics and Quantum Computation (Berlin: Springer) p. 12
|
[4] |
Nikolić B K, Zêrbo L P and Souma S 2010 The Oxford Handbook on Nanoscience and Technology: Frontiers and Advances (Oxford: Oxford University Press) p. 814
|
[5] |
Nagaosa N, Sinova J, Onoda S, MacDonald A H and Ong N P 2010 Rev. Mod. Phys. 82 1539
|
[6] |
Sun Q F, Wang J and Guo H 2005 Phys. Rev. B 71 165310
|
[7] |
Koga T, Nitta J, Akazaki T and Takayanagi H 2002 Phys. Rev. Lett. 89 046801
|
[8] |
Matsuyama T, Kürsten R, Meiupbetaner C and Merkt U 2000 Phys. Rev. B 61 15588
|
[9] |
Giglberger S, Golub L E, Belkov V V, Danilov S N, Schuh D, Gerl C, Rohlfing F, Stahl J, Wegscheider W, Weiss D, Prettl W and Ganichev S D 2007 Phys. Rev. B 75 035327
|
[10] |
Bergsten T, Kobayashi T, Sekine Y and Nitta J 2006 Phys. Rev. Lett. 97 196803
|
[11] |
Datta S and Das B 1990 Appl. Phys. Lett. 56 665
|
[12] |
Sinova J, Culcer D, Niu Q, Sinitsyn N A, Jungwirth T and MacDonald A H 2004 Phys. Rev. Lett. 92 126603
|
[13] |
Murakami S, Nagaosa N and Zhang S C 2003 Science 301 1348
|
[14] |
Inoue J I, Bauer G E W and Molenkamp L W 2004 Phys. Rev. B 70 041303(R)
|
[15] |
Jiang Z F, Li R D, Zhang S C and Liu W M 2005 Phys. Rev. B bf72 045201
|
[16] |
Wang J, Chan K S and Xing D Y 2006 Phys. Rev. B 73 033316
|
[17] |
Xing Y, Sun Q F and Wang J 2006 Phys. Rev. B 73 205339
|
[18] |
Sinova J, Murakami S, Shen S Q and Choi M S 2006 Sol. Stat. Commun. 138 214
|
[19] |
Rashba E I 2003 Phys. Rev. B 68 241315(R)
|
[20] |
Sonin E B 2007 Phys. Rev. B 76 033306
|
[21] |
Sun Q F, Xie X C and Wang J 2007 Phys. Rev. Lett. 98 196801
|
[22] |
Wang J and Chan K S 2006 Phys. Rev. B 74 035342
|
[23] |
Kato Y K, Myers R C, Gossard A C and Awschalom D D 2004 Science 306 1910
|
[24] |
Sih V, Myers R C, Kato Y K, Lau W H, Gossard A C and Awschalom D D 2005 Nat. Phys. 1 31
|
[25] |
Sih V, Lau W H, Myers R C, Horowitz V R, Gossard A C and Awschalom D D 2006 Phys. Rev. Lett. 97 096605
|
[26] |
Wunderlich J, Kaestner B, Sinova J and Jungwirth T 2005 Phys. Rev. Lett. 94 047204
|
[27] |
Valenzuela S O and Tinkham M 2006 Nature 442 176
|
[28] |
Saitoh E, Ueda M, Miyajima H and Tatara G 2006 Appl. Phys. Lett. 88 182509
|
[29] |
Kimura T, Otani Y, Sato T, Takahashi S and Maekawa S 2007 Phys. Rev. Lett. 98 156601
|
[30] |
Shi J, Zhang P, Xiao D and Niu Q 2006 Phys. Rev. Lett. 96 076604
|
[31] |
Luo Z H and Liang G D 2011 Acta Phys. Sin. 60 037303 (in Chinese)
|
[32] |
Xu N, Ding J W, Chen H B and Ma M M 2009 Chin. Phys. B 18 2030
|
[31] |
Büttiker M, Imry Y and Landauer R 1983 Phys. Lett. A 96 365
|
[32] |
Levy L P, Dolan G, Dunsmuir J and Bouchiat H 1990 Phys. Rev. Lett. 64 2074
|
[33] |
Meijer F E, Morpurgo A F and Klapwijk T M 2002 Phys. Rev. B 66 033107
|
[34] |
Splettstoesser J, Governale M and Zülicke U 2003 Phys. Rev. B 68 165341
|
[35] |
Souma S and Nikolić B K 2004 Phys. Rev. B 70 195346
|
[36] |
Jiang Z F and Li H 2008 Commun. Theor. Phys. 50 1453
|
[37] |
Lopez Sancho M P, Lopez Sancho J M and Rubio J 1984 J. Phys. F: Met. Phys. 14 1205
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|