|
|
Low-frequency vibrational modes of glutamine |
Wang Wei-Ning(王卫宁)a)†, Wang Guo(王果) b)‡, and Zhang Yan(张岩)a) |
a Beijing Key Laboratory for Terahertz Spectroscopy and Imaging, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Department of Physics, Capital Normal University, Beijing 100048, China; b Department of Chemistry, Capital Normal University, Beijing 100048, China |
|
|
Abstract High-resolution terahertz absorption and Raman spectra of glutamine in the frequency region 0.2 THz-2.8 THz are obtained by using THz time domain spectroscopy and low-frequency Raman spectroscopy. Based on the experimental and the computational results, the vibration modes corresponding to the terahertz absorption and Raman scatting peaks are assigned and further verified by the theoretical calculations. Spectral investigation of the periodic structure of glutamine based on the sophisticated hybrid density functional B3LYP indicates that the vibrational modes come mainly from the inter-molecular hydrogen bond in this frequency region.
|
Received: 09 May 2011
Revised: 21 June 2011
Accepted manuscript online:
|
PACS:
|
33.20.-t
|
(Molecular spectra)
|
|
33.20.Vq
|
(Vibration-rotation analysis)
|
|
78.30.-j
|
(Infrared and Raman spectra)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2007CB310408) and the Beijing Natural Science Foundation of China (Grant No. KZ201110028035). |
Cite this article:
Wang Wei-Ning(王卫宁), Wang Guo(王果), and Zhang Yan(张岩) Low-frequency vibrational modes of glutamine 2011 Chin. Phys. B 20 123301
|
[1] |
Gervasio F L, Cardini G, Salvi P R and Schettino V 1998 J. Phys. Chem. A 102 2131
|
[2] |
Beard M C, Turner G M and Schmutteanmaer C A 2002 J. Phys. Chem. B 106 7146
|
[3] |
Strachan C J, Rades T, Newnham D A, Gordon K C, Pepper M and Taday P F 2004 Chem. Phys. Lett. 390 20
|
[4] |
Markelz A G, Roitberg A and Heilweil E J 2000 Chem. Phys. Lett. 320 42
|
[5] |
Walther M, Fischer B, Schall M, Helm H and Jepsen P U 2000 Chem. Phys. Lett. 332 389
|
[6] |
Walther M, Plochocka P, Fischer B, Helm H and Jepsen P U 2002 Biopolymers 67 310
|
[7] |
Shen Y C, Upadhya P C and Linfield E H 2004 Vib. Spectr. 35 111
|
[8] |
Taday P F, Bradley I V and Arnone D D 2003 J. Biol. Phys. 29 109
|
[9] |
Cherkasova O P, Nazarov M M, Shkurinov A P and Fedorov V I 2009 Radiophysics and Quantum Electronics 52 518
|
[10] |
Brandt N N, Chikishev A Y, Kargovsky A V, Nazarov M M, Parashchuk O D, Sapozhnikov D A, Smirnova I N, Shkurinov A P and Sumbatyan N V 2008 Vib. Spectr. 47 53
|
[11] |
Yu B, Zeng F, Yang Y, Xing Q, Chechin A, Xin X, Zeylikovich I and Alfano R R 2004 J. Biophys. 86 1649
|
[12] |
Yamaguchi M, Miyamaru F, Yamamoto K, Tani M and Hangyo M 2005 Appl. Phys. Lett. 86 053903
|
[13] |
Korter T M, Balu R, Campbell M B, Beard M C, Gregurick S K and Heilweil E J 2006 Chem. Phys. Lett. 418 65
|
[14] |
Ueno Y, Rungsawang R, Tomita I and Ajito K 2006 Anal. Chem. 78 5424
|
[15] |
Nagai N and Katsurazawa Y 2006 Biopolymers 85 207
|
[16] |
Yan Z, Hou D, Huang P, Cao B, Zhang G and Zhou Z 2008 Meas. Sci. Technol. 19 015602
|
[17] |
Wang W N 2009 Acta Phys. Sin. 58 7640 (in Chinese)
|
[18] |
Ma S H, Shi Y L, Xu X L, Yan W, Yang Y P and Wang L 2006 Acta Phys. Sin. 55 4091 (in Chinese)
|
[19] |
Ma J L, Xu K J, Li Z, Jin B B, Fu R, Zhang C H, Ji Z M, Zhang C, Chen Z X, Chen J and Wu P H 2009 Acta Phys. Sin. 58 6101 (in Chinese)
|
[20] |
Tian L, Zhou Q L, Zhao K, Shi Y L, Zhao D M, Zhao S Q, Zhao H, Bao R M, Zhu S M, Miao Q and Zhang C L 2011 Chin. Phys. B 20 010703
|
[21] |
Siegrist K, Bucher C R, Mandelbaum I, Walker A R H, Balu R, Gregurick S K and Plusquellic D F 2006 J. Am. Chem. Soc. 128 5764
|
[22] |
Allis D G, Prokhorova D A and Korter T M 2006 J. Phys. Chem. A 110 1951
|
[23] |
Saito S, Inerbaev T M, Mizuseki H, Igarashi N, Note R and Kawazoe Y 2006 Chem. Phys. Lett. 423 439
|
[24] |
Saito S, Inerbaev T M, Mizuseki H, Igarashi N, Note R and Kawazoe Y 2006 Chem. Phys. Lett. 432 157
|
[25] |
Jepsen P U and Clark S J 2007 Chem. Phys. Lett. 442 275
|
[26] |
Hermet P, Bantignies J L, Maurin D and Sauvajol J L 2007 Chem. Phys. Lett. 445 47
|
[27] |
Pascale F, Zicovich-Wilson C M, Lopez F, Civalleri B, Orlando R and Dovesi R 2004 J. Comput. Chem. 25 888
|
[28] |
Zicovich-Wilson C M, Pascale F, Roetti C, Saunders V R, Orlando R and Dovesi R 2004 J. Comput. Chem. 25 1873
|
[29] |
Chou K C 1980 Biophys. J. 45 881
|
[30] |
Zicovich-Wilson C M, Dovesi R and Saunders V R 2001 J. Chem. Phys. 115 9708
|
[31] |
Becke A D 1993 J. Chem. Phys. 98 5648
|
[32] |
Lee C, Yang W and Parr R G 1988 Phys. Rev. B 37 785
|
[33] |
Dovesi R, Saunders V R, Roetti C, Orlando R, Zicovich-Wilson C M, Pascale F, Civalleri B, Doll K, Harrison N M, Bush I J, D'Arco Ph and Llunell M 2007 CRYSTAL06 User's Manual University of Torino, Italy
|
[34] |
Shen Y C, Upadhya P C, Linfield E H and Davies A G 2004 Vib. Spectro. 35 111
|
[35] |
Ugliengo P, Viterbo D and Chiari G 1993 Z. Kristallogr. 207 9
|
[36] |
Ugliengo P 2006 MOLDRAW: A Program to Display and Manipulate Molecular and Crystal Structures Torino, available on the web at http://www.moldraw.unito.it
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|