Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(11): 116104    DOI: 10.1088/1674-1056/20/11/116104
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effect of annealing on structural and optical properties of lead tungstate microcrystals

Pang Hua-Feng(庞华锋)a), Li Zhi-Jie(李志杰) a), Xiang Xia(向霞)a)b), Zhang Chun-Lai(章春来)a), Fu Yong-Qing(傅永庆) c), and Zu Xiao-Tao(祖小涛)a)b)†
a Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, China; International Center for Material Physics, Chinese Academy of Sciences, Shenyang 110015, China; c Thin Film Centre, Scottish Union of Physics Alliance, University of the West of Scotland, Paisley, PA1 2BE, UK
Abstract  Shuttle-like lead tungstate (PbWO4) microcrystals are synthesized at room temperature using the precipitation method with the cetyltrimethyl ammonium bromide. Results from both the X-ray diffraction and the scanning electron microscopy show that the lattice distortions of the PbWO4 microcrystals are reduced significantly when the annealing temperature is increased to 873 K. The result from the ultraviolet-visible diffuse reflectance spectroscopy shows that the exciton absorption appears in the sample annealed at 673 K. The self-trapped exciton luminescence due to the Jahn-Teller effect is also observed in the blue band. The interstitial oxygen ions in the WO42- groups are mainly resposible for the enhancement effect of the green luminescence of the annealed samples. The above results are supported by the spectrum analysis of the as-grown and the post-annealed samples using the X-ray photoelectron spectroscopy.
Keywords:  PbWO4 microcrystal      annealing      defects      photoluminescence  
Received:  27 March 2011      Revised:  19 June 2011      Accepted manuscript online: 
PACS:  61.72.Cc (Kinetics of defect formation and annealing)  
  71.55.Ht (Other nonmetals)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant Nos. ZYGX2009J046 and ZYGX2009X007), the Sichuan Provincial Young Scientists Foundation, China (Grant No. 2010JQ0006), the Royal Society- Research Grant, UK (Grant No. RG090609), and the Royal Academy of Engineering-Research Exchanges with China and India Awards in UK.

Cite this article: 

Pang Hua-Feng(庞华锋), Li Zhi-Jie(李志杰), Xiang Xia(向霞), Zhang Chun-Lai(章春来), Fu Yong-Qing(傅永庆), and Zu Xiao-Tao(祖小涛) Effect of annealing on structural and optical properties of lead tungstate microcrystals 2011 Chin. Phys. B 20 116104

[1] Lecoq P, Dafinei I, Auffray E, Schneegans M, Korzhik M V, Missevitch O V, Pavlenko V B, Fedorov A A, Annenkov A N, Kostylev V L and Ligun V D 1995 Nucl. Instrum. Methods Phys. Res. A 365 291
[2] Zhu R Y, Ma D A, Newman H B, Woody C L, Kierstead J A, Stoll S P and Levy P W 1996 Nucl. Instrum. Methods Phys. Res. A 376 319
[3] Kobayashi M, Usuki Y, Ishii M and Nikl M 2002 Nucl. Instrum. Meth. A 486 170
[4] Feng X Q and Tong B T 2003 Acta Phys. Sin. 52 2066 (in Chinese)
[5] Geng J, Lv Y, Lu D and Zhu J J 2006 Nanotechnology 17 614
[6] Ryu J H, Yoon J W and Shim K B 2005 Solid State Commun. 133 657
[7] Yang J, Lu C, Su H, Ma J, Cheng H and Qi L 2008 Nanotechnology 19 035608
[8] Yu J G, Zhao X F, Liu S W, Li M, Mann S and Ng D H L 2007 Appl. Phys. A 87 113
[9] Baccaroa S, Borgiab B, Cavallarib F, Ceciliaa A, Diemozb M, Festinesia A, Leonardib E, Lobkoc A, Longob E, Montecchia M, Organtinib G and Rapone B 1997 J. Luminesc. 72-74 748
[10] Krasnikov A, Laguta V, Nikl M and Zazubovich S 2007 J. Phys.: Condens. Matter 19 306202
[11] Bohacek P and Nikl M 2005 Nucl. Instrum. Methods Phys. Res. A 537 86
[12] Bohacek P, Solovieva N and Nikl M 2008 IEEE Trans. Nucl. Sci. 55 1289
[13] Nikl M, Nitsch K, Baccaro S, Cecilia A, Montecchi M, Borgia B, Dafinei I, Diemoz M, Martini M, Rosetta E, Spinolo G, Vedda A, Kobayashi M, Ishii M, Usuki Y, Jarolimek O and Reiche P 1997 J. Appl. Phys. 82 5758
[14] Han B, Feng X, Hu G, Zhang Y and Yin Z 1999 J. Appl. Phys. 86 3571
[15] Zhou G, Wang S, Lu M, Xiu Z and Zhang H 2005 Mater. Chem. Phys. 93 138
[16] Lei F, Yan B, Chen H H, Zhang Q and Zhao J T 2009 Cryst. Growth Des. 9 3730
[17] Huo L and Chu Y 2006 Mater. Lett. 60 2675
[18] Wang G and Wan G 2009 J. Alloy Compd. 484 505
[19] Wang G Z and Hao C C 2009 Mater. Res. Bull. 44 418
[20] George T, Joseph S, Sunny A T and Mathew S 2008 J. Nanopart. Res. 10 567
[21] Itoh M and Sakurai T 2005 Phys. Stat. Sol. (b) 242 R52
[22] Itoh M and Sakurai T 2006 Phys. Rev. B 73 235106
[23] Itoh M and Aoki T 2010 J. Phys.: Condens. Matter 22 045503
[24] Bacci M, Porcinai S, Mihokova E, Nikl M and Polak K 2001 Phys. Rev. B 64 104302
[25] Bacci M, Mihokova E and Schulman L S 2002 Phys. Rev. B 66 132301
[26] Leonelli R and Brebner J L 1986 Phys. Rev. B 33 8649
[27] Kobayashi M, Ishii M, Usuki Y and Yahagi H 1993 Nucl. Instrum. Methods Phys. Res. A 333 429
[28] Shi C, Wei Y, Yang X, Zhou D, Guo C, Liao J and Tang H 2000 Chem. Phys. Lett. 328 1
[29] Chen Y, Shi C and Hu G 2000 J. Appl. Phys. 87 1503
[30] Wagner C D, Riggs W M, Davis L E, Moulder J F and Mullenberg G E 1992 Handbook of X Ray Photoelectron Spectroscopy (Minnesota: Perkin-Elmer Corporation) p. 160
[31] Yang Y, Taggart D K, Brown M A, Xiang C, Kung S C, Fan Y, Hemminger J C and Penner R M 2009 ACSNANO 3 4144
[32] Gong W, Li J F, Chu X, Gui Z and Li L 2004 Acta Mater. 52 2787
[33] Senthil W and Yong K 2007 Nanotechnology 18 395604
[34] Phuruangrat A, Ham D J, Hong S J, Thongtema S and Lee J S 2010 J. Mater. Chem. 20 1683
[35] Zhu W, Feng X, Wu Z and Man Z 2002 Physica B 324 53
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[3] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[4] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[5] Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing
Chen Wang(王尘), Wei-Hang Fan(范伟航), Yi-Hong Xu(许怡红), Yu-Chao Zhang(张宇超), Hui-Chen Fan(范慧晨), Cheng Li(李成), and Song-Yan Cheng(陈松岩). Chin. Phys. B, 2022, 31(9): 098503.
[6] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[7] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[8] Direct visualization of structural defects in 2D semiconductors
Yutuo Guo(郭玉拓), Qinqin Wang(王琴琴), Xiaomei Li(李晓梅), Zheng Wei(魏争), Lu Li(李璐), Yalin Peng(彭雅琳), Wei Yang(杨威), Rong Yang(杨蓉), Dongxia Shi(时东霞), Xuedong Bai(白雪冬), Luojun Du(杜罗军), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(7): 076105.
[9] Introducing voids around the interlayer of AlN by high temperature annealing
Jianwei Ben(贲建伟), Jiangliu Luo(罗江流), Zhichen Lin(林之晨), Xiaojuan Sun(孙晓娟), Xinke Liu(刘新科), and Xiaohua Li(黎晓华). Chin. Phys. B, 2022, 31(7): 076104.
[10] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[11] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[12] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[13] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[14] Effect of heavy ion irradiation on the interface traps of AlGaN/GaN high electron mobility transistors
Zheng-Zhao Lin(林正兆), Ling Lü(吕玲), Xue-Feng Zheng(郑雪峰), Yan-Rong Cao(曹艳荣), Pei-Pei Hu(胡培培), Xin Fang(房鑫), and Xiao-Hua Ma(马晓华). Chin. Phys. B, 2022, 31(3): 036103.
[15] Radiation effects of 50-MeV protons on PNP bipolar junction transistors
Yuan-Ting Huang(黄垣婷), Xiu-Hai Cui(崔秀海), Jian-Qun Yang(杨剑群), Tao Ying(应涛), Xue-Qiang Yu(余雪强), Lei Dong(董磊), Wei-Qi Li(李伟奇), and Xing-Ji Li(李兴冀). Chin. Phys. B, 2022, 31(2): 028502.
No Suggested Reading articles found!