Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(10): 108402    DOI: 10.1088/1674-1056/20/10/108402
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Linear analysis of a three-dimensional rectangular Cerenkov maser with a sheet electron beam

Chen Ye(陈晔)a)b), Zhao Ding(赵鼎)a), and Wang Yong(王勇)a)
a Key Laboratory of High Power Microwave Sources and Technologies, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China; b Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
Abstract  A linear theory of a rectangular Cerenkov maser (RCM) with a sheet electron beam is developed by using the field-match method. Based on the three-dimensional beam-wave interaction model proposed in this paper, a hybrid-mode dispersion equation and its analytical solution are derived for the RCM. Through numerical calculations, the effects of the beam-grating gap, beam thickness, current density, beam voltage and waveguide width on the linear growth rate are analysed. Moreover, the performance difference between the RCM with the closed transverse boundary and that with the upper open boundary is compared. The results show that the closed RCM model can avoid the effect of RF radiation on beam-wave interaction, which is more rational for practical applications.
Keywords:  Cerenkov maser      field-match method      beam-wave interaction      hybrid-mode dispersion      growth rate  
Received:  29 March 2011      Revised:  12 May 2011      Accepted manuscript online: 
PACS:  84.40.Ik (Masers; gyrotrons (cyclotron-resonance masers))  
  94.05.Pt (Wave/wave, wave/particle interactions)  
  41.60.Bq (Cherenkov radiation)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60801031).

Cite this article: 

Chen Ye(陈晔), Zhao Ding(赵鼎), and Wang Yong(王勇) Linear analysis of a three-dimensional rectangular Cerenkov maser with a sheet electron beam 2011 Chin. Phys. B 20 108402

[1] Walsh J E, Marshall T C and Schlesinger S P 1977 Phys. Fluids 20 709
[2] Felch K L, Busby K O, Layman R W, Kapilow D and Walsh J E 1981 Appl. Phys. Lett. 38 601
[3] Laven S V, Branscum J, Golub J, Layman R and Walsh J E 1982 Appl. Phys. Lett. 41 408
[4] Garate E P, Moustaizis S, Buzzi J M, Rouille C and Lamain H 1986 Appl. Phys. Lett. 48 1326
[5] Walsh J E, Shaughnessy C H, Layman R, Dattoli G, Gallerano G P and Renieri A 1988 Nucl. Instr. Method A 272 132
[6] Garate E, Kosai H, Evans K, Fisher A, Cherry R and Main W 1990 Appl. Phys. Lett. 56 1092
[7] Kosai H, Garate E, Fisher A and Main W 1992 IEEE Trans. Plasma Sci. 20 288
[8] Zhao D, Ding Y, Wang Y and Ruan C 2010 Phys. Plasmas 17 113110
[9] He J, Wei Y, Gong Y, Duan Z and Wang W 2010 Acta Phys. Sin. 59 2843 (in Chinese)
[10] Zhang J, Zhong H, Shu T and Yang J 2003 Chin. Phys. Lett. 20 2265
[11] Kuzelev M V, Rukhadze A A and Strelkov P S 1987 Sov. J. Plasma Phys. 13 793
[12] Carmel Y, Minami K and Weiran J 1990 IEEE Trans. Plasma Sci. 18 497
[13] Kosai H, Garate E and Fisher A 1990 Proc. SPIE 1226 191
[14] Sheng-Fuh R C, Scharer J E and Booske J H 1992 IEEE Trans. Plasma Sci. 20 293
[15] Carlsten B E 2002 Phys. Plasmas 9 1790
[16] McVey B D, Basten M A, Booske J H, Joe J and Scharer J E 1994 IEEE Trans. Microwave Theory and Techniques 42 995
[17] Mehrany K and Rashidian B 2003 IEEE Trans. Electron Dev. 50 1562
[18] Hu Y, Yang Z, Li B, Li J, Huang T, Jin X, Zhu X and Liang X 2010 Acta Phys. Sin. 59 5439 (in Chinese)
[19] Lawson J D 1988 The Physics of Charged Particles Chap. 6 (Oxford: Clarendon) p. 293; see also, Joe J, Chang S F, Scharer J and Booske J 1991 Microwave Opt. Technol. Lett. 4 443
[20] Peng W, Hu Y, Yang Z, Li J, Lu Q and Li B 2010 Acta Phys. Sin. 59 8478 (in Chinese)
[21] Zhang K and Li D 2001 Electromagnetic Theory for Microwaves and Optoelectronics (Beijing: Electronics Industry Press) (in Chinese)
[1] Design and high-power test of 800-kW UHF klystron for CEPC
Ou-Zheng Xiao(肖欧正), Shigeki Fukuda, Zu-Sheng Zhou(周祖圣), Un-Nisa Zaib, Sheng-Chang Wang(王盛昌), Zhi-Jun Lu(陆志军), Guo-Xi Pei(裴国玺), Munawar Iqbal, and Dong Dong(董东). Chin. Phys. B, 2022, 31(8): 088401.
[2] Plasma assisted molecular beam epitaxial growth of GaN with low growth rates and their properties
Zhen-Hua Li(李振华), Peng-Fei Shao(邵鹏飞), Gen-Jun Shi(施根俊), Yao-Zheng Wu(吴耀政), Zheng-Peng Wang(汪正鹏), Si-Qi Li(李思琦), Dong-Qi Zhang(张东祺), Tao Tao(陶涛), Qing-Jun Xu(徐庆君), Zi-Li Xie(谢自力), Jian-Dong Ye(叶建东), Dun-Jun Chen(陈敦军), Bin Liu(刘斌), Ke Wang(王科), You-Dou Zheng(郑有炓), and Rong Zhang(张荣). Chin. Phys. B, 2022, 31(1): 018102.
[3] Multibeam Raman amplification of a finite-duration seed in a short distance
Y G Chen(陈雨谷), Y Chen(陈勇), S X Xie(谢善秀), N Peng(彭娜), J Q Yu(余金清), and C Z Xiao(肖成卓). Chin. Phys. B, 2021, 30(10): 105202.
[4] Tests of the real-time vertical growth rate calculation on EAST
Na-Na Bao(鲍娜娜), Yao Huang(黄耀), Jayson Barr, Zheng-Ping Luo(罗正平), Yue-Hang Wang(汪悦航), Shu-Liang Chen(陈树亮), Bing-Jia Xiao(肖炳甲), David Humphreys. Chin. Phys. B, 2020, 29(6): 065204.
[5] Molecular beam epitaxial growth of high quality InAs/GaAs quantum dots for 1.3-μ quantum dot lasers
Hui-Ming Hao(郝慧明), Xiang-Bin Su(苏向斌), Jing Zhang(张静), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2019, 28(7): 078104.
[6] Linear theory of beam-wave interaction in double-slot coupled cavity travelling wave tube
Fang-ming He(何昉明), Wen-qiu Xie(谢文球), Ji-run Luo(罗积润), Min Zhu(朱敏), Wei Guo(郭炜). Chin. Phys. B, 2016, 25(3): 038401.
[7] Decline of nucleation in the heating process with a high heating rate
Yang Gao-Lin (杨高林), Lin Xin (林鑫), Song Meng-Hua (宋梦华), Hu Qiao (胡桥), Wang Zhi-Tai (汪志太), Huang Wei-Dong (黄卫东). Chin. Phys. B, 2014, 23(8): 086401.
[8] Growth rate of peeling mode in the near separatrix region of diverted tokamak plasma
Shi Bing-Ren (石秉仁). Chin. Phys. B, 2014, 23(1): 015202.
[9] Dispersion relation and growth rate for a corrugated channel free-electron laser with a helical wiggler pump
A. Hasanbeigi, H. Mehdiank. Chin. Phys. B, 2013, 22(7): 075205.
[10] A novel slotted helix slow-wave structure for high power Ka-band traveling-wave tubes
Liu Lu-Wei (刘鲁伟), Wei Yan-Yu (魏彦玉), Wang Shao-Meng (王少萌), Hou Yan (侯艳), Yin Hai-Rong (殷海荣), Zhao Guo-Qing (赵国庆), Duan Zhao-Yun (段兆云), Xu Jin (徐进), Gong Yu-Bin (宫玉彬), Wang Wen-Xiang (王文祥), Yang Ming-Hua (杨明华). Chin. Phys. B, 2013, 22(10): 108401.
[11] Simplified nonlinear theory of the dielectric loaded rectangular Cerenkov maser
Zhao Ding (赵鼎), Ding Yao-Gen (丁耀根). Chin. Phys. B, 2012, 21(9): 094102.
[12] Study on a W-band modified V-shaped microstrip meander-line traveling-wave tube
Shen Fei(沈飞), Wei Yan-Yu(魏彦玉), Xu Xiong(许雄), Yin Hai-Rong(殷海荣), Gong Yu-Bin(宫玉彬), and Wang Wen-Xiang(王文祥) . Chin. Phys. B, 2012, 21(6): 064210.
[13] Analysis and design of the taper in metal-grating periodic slow-wave structures for rectangular Cerenkov masers
Chen Ye(陈晔), Zhao Ding(赵鼎), Wang Yong(王勇), and Shu Wen(舒雯) . Chin. Phys. B, 2012, 21(5): 058401.
[14] Linear theory of a dielectric-loaded rectangular Cerenkov maser with a sheet electron beam
Chen Ye (陈晔), Zhao Ding (赵鼎), Liu Wen-Xin (刘文鑫), Wang Yong (王勇), Wan Xiao-Sheng (万晓声). Chin. Phys. B, 2012, 21(10): 104103.
[15] Wave growth rate in a cylindrical metal waveguide with ion-channel guiding of a relativistic electron beam
Li Hai-Rong(李海容), Tang Chang-Jian(唐昌建), and Wang Shun-Jin(王顺金). Chin. Phys. B, 2010, 19(12): 124101.
No Suggested Reading articles found!