Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(1): 015202    DOI: 10.1088/1674-1056/23/1/015202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Growth rate of peeling mode in the near separatrix region of diverted tokamak plasma

Shi Bing-Ren (石秉仁)
Southwestern Institute of Physics, Chengdu 610041, China
Abstract  An analytical expression of the peeling mode in the near separatrix region of diverted tokamak plasma is derived. It is shown that in diverted plasmas both with single and double X points, though the perturbed potential energy of the unstable peeling mode tends to be large, its growth rate becomes very small due to the even larger kinetic energy. Compared to some recent studies that give qualitatively correct results about this growth rate, our result is directly related with the diverted equilibrium quantities suitable for application to realistic experiments.
Keywords:  diverted plasma      tokamak pedestal      growth rate of peeling mode  
Received:  26 April 2013      Revised:  23 May 2013      Accepted manuscript online: 
PACS:  52.35.Py (Macroinstabilities (hydromagnetic, e.g., kink, fire-hose, mirror, ballooning, tearing, trapped-particle, flute, Rayleigh-Taylor, etc.))  
  52.55.Fa (Tokamaks, spherical tokamaks)  
Fund: Project supported by the National Magnetic Confinement Fusion Science Program of China (Grant No. 2009GB101002).
Corresponding Authors:  Shi Bing-Ren     E-mail:  shibr@swip.ac.cn

Cite this article: 

Shi Bing-Ren (石秉仁) Growth rate of peeling mode in the near separatrix region of diverted tokamak plasma 2014 Chin. Phys. B 23 015202

[1] Zohm H 1996 Plasma Phys. Contr. Fusion 38 105
[2] Hender T C 2007 Nucl. Fusion 47 S128
[3] Snyder P B, Groener R J, Leonard A W, Osborne T H and Wilson H R 2009 Phys. Plasmas 16 056118
[4] Lortz D 1975 Nucl. Fusion 15 49
[5] Connor J W, Hastie R J, Wilson H R and Miller R L 1998 Phys. Plasmas 5 2687
[6] Webster A J and Gimblett C G 2009 Phys. Rev. Lett. 102 035003
[7] Webster A J and Gimblett C G 2009 Phys. Plasmas 16 082502
[8] Webster A J 2009 Phys. Plasmas 16 082503
[9] Webster A J 2012 Nucl. Fusion 52 114023
[10] Saarelma S, Kwon O J, Kirk A and the MAST team 2011 Plasma Phys. Contr. Fusion 53 025011
[11] Sugiyama L E and Strauss H R 2010 Plasma Phys. 17 062505
[12] Ferraro M N, Jardin S C and Snyder P B 2010 Phys. Plasmas 17 102508
[13] Huysmans G T A 2005 Plasma Phys. Contr. Fusion 47 2107
[14] Huysmans G T A and Czarny O 2007Nucl. Fusion 47 659
[15] Freidberg J P 1987 Ideal Magnetohydrodynamics (New York: Plenum)
[16] Shi B 2012 Chin. Phys. B 21 045203
[1] Effect of kinetic ions on the toroidal double-tearing modes
Ruibo Zhang(张睿博), Lei Ye(叶磊), Yang Chen, Nong Xiang(项农), and Xiaoqing Yang(杨小庆). Chin. Phys. B, 2023, 32(2): 025203.
[2] Linear analysis of plasma pressure-driven mode in reversed shear cylindrical tokamak plasmas
Ding-Zong Zhang(张定宗), Xu-Ming Feng(冯旭铭), Jun Ma(马骏), Wen-Feng Guo(郭文峰), Yan-Qing Huang(黄艳清), and Hong-Bo Liu(刘洪波). Chin. Phys. B, 2023, 32(1): 015201.
[3] Application of Galerkin spectral method for tearing mode instability
Wu Sun(孙武), Jiaqi Wang(王嘉琦), Lai Wei(魏来), Zhengxiong Wang(王正汹), Dongjian Liu(刘东剑), and Qiaolin He(贺巧琳). Chin. Phys. B, 2022, 31(11): 110203.
[4] Analytical model for Rayleigh—Taylor instability in conical target conduction region
Zhong-Yuan Zhu(朱仲源), Yun-Xing Liu(刘云星), Ying-Jun Li(李英骏), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(10): 105202.
[5] Effect of initial phase on the Rayleigh—Taylor instability of a finite-thickness fluid shell
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), Jing Li(李景), and Ying-Jun Li(李英骏). Chin. Phys. B, 2022, 31(3): 035203.
[6] Neoclassical tearing mode stabilization by electron cyclotron current drive for HL-2M tokamak
Jing-Chun Li(李景春), Jia-Qi Dong(董家齐), Xiao-Quan Ji(季小全), and You-Jun Hu(胡友俊). Chin. Phys. B, 2021, 30(7): 075203.
[7] Gaussian process tomography based on Bayesian data analysis for soft x-ray and AXUV diagnostics on EAST
Yan Chao(晁燕), Liqing Xu(徐立清), Liqun Hu(胡立群), Yanmin Duan(段艳敏), Tianbo Wang(王天博), Yi Yuan(原毅), Yongkuan Zhang(张永宽). Chin. Phys. B, 2020, 29(9): 095201.
[8] Spontaneous growth of the reconnection electric field during magnetic reconnection with a guide field: A theoretical model and particle-in-cell simulations
Kai Huang(黄楷), Quan-Ming Lu(陆全明), Rong-Sheng Wang(王荣生), Shui Wang(王水). Chin. Phys. B, 2020, 29(7): 075202.
[9] Basic features of the multiscale interaction between tearing modes and slab ion-temperature-gradient modes
L Wei(魏来), Z X Wang(王正汹), J Q Li(李继全), Z Q Hu(胡朝清), Y Kishimoto(岸本泰明). Chin. Phys. B, 2019, 28(12): 125203.
[10] Coupling between velocity and interface perturbations in cylindrical Rayleigh-Taylor instability
Hong-Yu Guo(郭宏宇), Li-Feng Wang(王立锋), Wen-Hua Ye(叶文华), Jun-Feng Wu(吴俊峰), Wei-Yan Zhang(张维岩). Chin. Phys. B, 2018, 27(5): 055205.
[11] Rayleigh-Taylor instability at spherical interfaces of incompressible fluids
Hong-Yu Guo(郭宏宇), Li-Feng Wang(王立锋), Wen-Hua Ye(叶文华), Jun-Feng Wu(吴俊峰), Ying-Jun Li(李英骏), Wei-Yan Zhang(张维岩). Chin. Phys. B, 2018, 27(2): 025206.
[12] Rayleigh-Taylor instability of multi-fluid layers in cylindrical geometry
Hong-Yu Guo(郭宏宇), Li-Feng Wang(王立锋), Wen-Hua Ye(叶文华), Jun-Feng Wu(吴俊峰), Wei-Yan Zhang(张维岩). Chin. Phys. B, 2017, 26(12): 125202.
[13] Energetic-ion excited internal kink modes with weak magnetic shear in q0 >1 tokamak plasmas
Wen-Ming Chen(陈文明), Xiao-Gang Wang(王晓钢), Xian-Qu Wang(王先驱), Rui-Bin Zhang(张瑞斌). Chin. Phys. B, 2017, 26(8): 085201.
[14] Comparison benchmark between tokamak simulation code and TokSys for Chinese Fusion Engineering Test Reactor vertical displacement control design
Qing-Lai Qiu(仇庆来), Bing-Jia Xiao(肖炳甲), Yong Guo(郭勇), Lei Liu(刘磊), Yue-Hang Wang(汪悦航). Chin. Phys. B, 2017, 26(6): 065205.
[15] Numerical analysis of the optimized performance of the electron cyclotron wave system in a HL-2M tokamak
Jing-Chun Li(李景春), Xue-Yu Gong(龚学余), Jia-Qi Dong(董家齐), Jun Wang(王俊), Lan Yin(尹岚). Chin. Phys. B, 2016, 25(4): 045201.
No Suggested Reading articles found!