Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(10): 104103    DOI: 10.1088/1674-1056/21/10/104103
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Linear theory of a dielectric-loaded rectangular Cerenkov maser with a sheet electron beam

Chen Ye (陈晔)a b, Zhao Ding (赵鼎)b, Liu Wen-Xin (刘文鑫)b, Wang Yong (王勇)b, Wan Xiao-Sheng (万晓声)a b
a Key Laboratory of High Power Microwave Sources and Technologies, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China;
b Graduate University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  A three-dimensional model of a dielectric-loaded rectangular Cerenkov maser with a sheet electron beam for the beam-wave interaction is proposed. Based on this model, the hybrid-mode dispersion equation is derived with the Borgnis potential function by using the field-matching method. Its approximate solution is obtained under the assumption of a dilute electron beam. By using the Ansoft high frequency structural simulator (HFSS) code, the electromagnetic field distribution in the interaction structure is given. Through numerical calculations, the effects of beam thickness, beam and dielectric-layer gap distance, beam voltage, and current density on the resonant growth rate are analysed in detail.
Keywords:  rectangular Cerenkov maser      beam-wave interaction      hybrid-mode      dispersion equation      Borgnis potential function  
Received:  06 January 2012      Revised:  09 April 2012      Accepted manuscript online: 
PACS:  41.60.Bq (Cherenkov radiation)  
  94.20.wj (Wave/particle interactions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60801031 and 10905032) and the Knowledge Innovation Project of Chinese Academy of Sciences (Grant No. YYYJ-1123-5).
Corresponding Authors:  Chen Ye     E-mail:  chenye07@mails.gucas.ac.cn

Cite this article: 

Chen Ye (陈晔), Zhao Ding (赵鼎), Liu Wen-Xin (刘文鑫), Wang Yong (王勇), Wan Xiao-Sheng (万晓声) Linear theory of a dielectric-loaded rectangular Cerenkov maser with a sheet electron beam 2012 Chin. Phys. B 21 104103

[1] Zhao D, Ding Y, Wang Y and Ruan C 2010 Phys. Plasmas 17 113110
[2] He J, Wei Y Y, Gong Y B, Duan Z Y and Wang W X 2010 Acta Phys. Sin. 59 2843 (in Chinese)
[3] Li Y B, Zhu D J and Liu S G 2008 Journal of University of Electronic Science and Technology of China 37 730 (in Chinese)
[4] Shu W, Wang Y and Zhao D 2011 High Power Laser and Particle Beams 23 1574 (in Chinese)
[5] Dai L 2009 Ph. D Thesis, University of Electronic Science and Technology of China (in Chinese)
[6] Walsh J E, Marshall T C and Schlesinger S P 1977 Phys. Fluids 20 709
[7] Felch K L, Busby K O, Layman R W, Kapilow D and Walsh J E 1981 Appl. Phys. Lett. 38 601
[8] Laven S V, Branscum J, Golub J, Layman R and Walsh J E 1982 Appl. Phys. Lett. 41 408
[9] Garate E P, Moustaizis S, Buzzi J M, Rouille C and Lamain H 1986 Appl. Phys. Lett. 48 1326
[10] Kosai H, Garate E, Fisher A and Main W 1992 IEEE Trans. Plasma Sci. 20 288
[11] Shlapakovskii A S 1996 SPIE 2843 137
[12] Walsh J E, Shaughnessy C H, Layman R, Dattoli G, Gallerano G P and Renieri A 1988 Nucl. Instr. Method A 272 132
[13] Garate E, Kosai H, Evans K, Fisher A, Cherry R and Main W 1990 Appl. Phys. Lett. 56 1092
[14] Carlsten B E 2002 Phys. Plasmas 9 1790
[15] Zhang K Q and Li D J 2001 Electromagnetic Theory for Microwaves and Optoelectronics (Beijing: Electronics Industry Press) (in Chinese)
[16] Lawson J D 1988 The Physics of Charged Particles Chap. 6 (Oxford: Clarendon) p. 293
[17] Joe J, Chang S F, Scharer J and Booske J 1991 Microwave Opt. Technol. Lett. 4 443
[18] Huang H C 1984 Coupled Mode Theory (Utrecht: VNU Science Press BV)
[1] Design and high-power test of 800-kW UHF klystron for CEPC
Ou-Zheng Xiao(肖欧正), Shigeki Fukuda, Zu-Sheng Zhou(周祖圣), Un-Nisa Zaib, Sheng-Chang Wang(王盛昌), Zhi-Jun Lu(陆志军), Guo-Xi Pei(裴国玺), Munawar Iqbal, and Dong Dong(董东). Chin. Phys. B, 2022, 31(8): 088401.
[2] Linear theory of beam-wave interaction in double-slot coupled cavity travelling wave tube
Fang-ming He(何昉明), Wen-qiu Xie(谢文球), Ji-run Luo(罗积润), Min Zhu(朱敏), Wei Guo(郭炜). Chin. Phys. B, 2016, 25(3): 038401.
[3] Anomalous transport in fluid field with random waiting time depending on the preceding jump length
Hong Zhang(张红), Guo-Hua Li(李国华). Chin. Phys. B, 2016, 25(11): 110504.
[4] Modified method of surface plasmons in metal superlattices
Zhang Yu-Liang (张宇亮), Wang Xuan-Zhang (王选章). Chin. Phys. B, 2015, 24(5): 057301.
[5] A novel slotted helix slow-wave structure for high power Ka-band traveling-wave tubes
Liu Lu-Wei (刘鲁伟), Wei Yan-Yu (魏彦玉), Wang Shao-Meng (王少萌), Hou Yan (侯艳), Yin Hai-Rong (殷海荣), Zhao Guo-Qing (赵国庆), Duan Zhao-Yun (段兆云), Xu Jin (徐进), Gong Yu-Bin (宫玉彬), Wang Wen-Xiang (王文祥), Yang Ming-Hua (杨明华). Chin. Phys. B, 2013, 22(10): 108401.
[6] Study on a W-band modified V-shaped microstrip meander-line traveling-wave tube
Shen Fei(沈飞), Wei Yan-Yu(魏彦玉), Xu Xiong(许雄), Yin Hai-Rong(殷海荣), Gong Yu-Bin(宫玉彬), and Wang Wen-Xiang(王文祥) . Chin. Phys. B, 2012, 21(6): 064210.
[7] Analysis and design of the taper in metal-grating periodic slow-wave structures for rectangular Cerenkov masers
Chen Ye(陈晔), Zhao Ding(赵鼎), Wang Yong(王勇), and Shu Wen(舒雯) . Chin. Phys. B, 2012, 21(5): 058401.
[8] Linear analysis of a three-dimensional rectangular Cerenkov maser with a sheet electron beam
Chen Ye(陈晔), Zhao Ding(赵鼎), and Wang Yong(王勇) . Chin. Phys. B, 2011, 20(10): 108402.
[9] The dispersive properties of a dielectric-rod loaded waveguide immersed in a magnetized annular plasma
Li Wei (李伟), Gong Ma-Li (巩马理), Wei Yan-Yu (魏彦玉), Xie Hong-Quan (谢鸿全). Chin. Phys. B, 2004, 13(1): 54-59.
No Suggested Reading articles found!