INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Molecular beam epitaxy growth of GaAs on an offcut Ge substrate |
He Ji-Fang(贺继方), Niu Zhi-Chuan(牛智川)†, Chang Xiu-Ying(常秀英), Ni Hai-Qiao(倪海桥), Zhu Yan(朱岩), Li Mi-Feng(李密锋), and Shang Xiang-Jun(尚向军) |
State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China |
|
|
Abstract Molecular beam epitaxy growth of GaAs on an offcut Ge (100) substrate has been systemically investigated. A high quality GaAs/Ge interface and GaAs film on Ge have been achieved. High temperature annealing before GaAs deposition is found to be indispensable to avoid anti-phase domains. The quality of the GaAs film is found to strongly depend on the GaAs/Ge interface and the beginning of GaAs deposition. The reason why both high temperature annealing and GaAs growth temperature can affect epitaxial GaAs film quality is discussed. High quality In0.17Ga0.83As/GaAs strained quantum wells have also been achieved on a Ge substrate. Samples show flat surface morphology and narrow photoluminescence line width compared with the same structure sample grown on a GaAs substrate. These results indicate a large application potential for III–V compound semiconductor optoelectronic devices on Ge substrates.
|
Received: 31 March 2010
Revised: 01 July 2010
Accepted manuscript online:
|
PACS:
|
81.15.Hi
|
(Molecular, atomic, ion, and chemical beam epitaxy)
|
|
68.35.Ct
|
(Interface structure and roughness)
|
|
68.65.Fg
|
(Quantum wells)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60625405), and the National Basic Research Program of China (Grant Nos. 2007CB936304 and 2010CB327601). |
Cite this article:
He Ji-Fang(贺继方), Niu Zhi-Chuan(牛智川), Chang Xiu-Ying(常秀英), Ni Hai-Qiao(倪海桥), Zhu Yan(朱岩), Li Mi-Feng(李密锋), and Shang Xiang-Jun(尚向军) Molecular beam epitaxy growth of GaAs on an offcut Ge substrate 2011 Chin. Phys. B 20 018102
|
[1] |
Karam N H, King R R, Haddad M, Ermer J H, Yoon H, Cotal H L, Sudharsanan R, Eldredge J W, Edmondson K, Joslin D E, Krut D D, Takahashi M, Nishikawa W, Gillanders M, Granata J, Hebert P, Cavicchi B T and Lillington D R 2001 Sol. Energy Mater. Solar Cells 66 453
|
[2] |
Karam N H, King R R, Cavicchi B T, Krut D D, Ermer J H, Haddad M, Li C, Joslin D E, Takahashi M, Eldredge J W, Nishikawa W T, Lillington D R, Keyes B M and Ahrenkiel R K 1999 IEEE Trans. Electron Dev. 46 2116
|
[3] |
Takamoto T, Agui T, Washio H, Takahashi N, Nakamura K, Anzawa O, Kaneiwa M, Kamimura K, Okamoto K and Yamaguchi M 2005 Photovoltaic Specialists Conference 2005, Conference Record of the Thirty-first IEEE Florida, Jan. 3--5 2005 p519
|
[4] |
Yamaguchi M 2003 Sol. Energy Mater. Solar Cells 75 261
|
[5] |
Wojtczuk S J, Tobin S P, Keavney C J, Bajgar C, Sanfacon M M, Geoffroy L M, Dixon T M, Vernon S M, Scofield J D and Ruby D S 1990 IEEE Trans. Electron Dev. 37 455
|
[6] |
Zhao H J, He S Y, Sun Y Z, Sun Q, Xiao Z B, L"u W and Huang C Y 2009 Acta Phys. Sin. 58 404 (in Chinese)
|
[7] |
Chen M B, Cui R Q, Wang L X, Zhang Z W, Lu J F and Chi W Y 2004 Acta Phys. Sin. 53 3632 (in Chinese)
|
[8] |
D'Hondt M, Yu Z Q, Depreter B, Sys C, Moerman I, Demeester P and Mijlemans P 1998 J. Cryst. Growth 195 655
|
[9] |
Tobin S P, Vernon S M, Bajgar C, Haven V E, Geoffroy L M, Sanfacon M M, Lillington D R, Hart Jr R E, Emery K A and Matson R J 1998 Photovoltaic Specialists Conference, 1988, Conference Record of the Twentieth IEEE Las Vegas, Sep. 26--30 1988 p405
|
[10] |
King R R, Law D C, Edmondson K M, Fetzer C M, Kinsey G S, Yoon H, Sherif R A and Karam N H 2007 Appl. Phys. Lett. 90 183156
|
[11] |
Guter W, Schone J, Philipps S P, Steiner M, Siefer G, Wekkeli A, Welser E, Oliva E, Bett A W and Dimrot F 2009 Appl. Phys. Lett. 94 223504
|
[12] |
Kroemer H 1987 J. Cryst. Growth 81 193
|
[13] |
Li Y, Salviati G, Bongers M M G, Lazzarini L, Nasi L and Giling L J 1996 J. Cryst. Growth 163 195
|
[14] |
Strite S, Biswas D, Kumar N S, Fradkin M and Morkoc H 1990 Appl. Phys. Lett. 56 244
|
[15] |
Wan A, Menon V, Forrest S R, Wasserman D, Lyon S A and Kahn A 2004 J. Vac. Sci. Technol. B 22 1893
|
[16] |
Chen J C, Ristow M L, Cubbage J I and Werthen J G 1991 Appl. Phys. Lett. 58 2282
|
[17] |
Chen J C, Ristow M L, Cubbage J I and Werthen J G 1992 J. Electron. Mater. 21 347
|
[18] |
Sieg R M, Ringel S A, Ting S M, Fitzgerald E A and Sacks R N 1998 J. Electron. Mater. 27 900
|
[19] |
Knuuttila L, Lankinen A, Likonen J, Lipsanen H, Lu X, McNally P, Riikonen J and Tuomi T 2005 Jpn. J. Appl. Phys. Part 1 44 7777
|
[20] |
Ni H Q, Niu Z C, Xu X H, Xu Y Q, Zhang W, Wei X, Bian L F, He Z H, Han Q and Wu R H 2004 Appl. Phys. Lett. 84 5100
|
[21] |
Gan S, Li L, Begarney M J, Law D, Han B K and Hicks R F 1999 J. Appl. Phys. 85 2004
|
[22] |
Jasik A, Wnuk A, Wojcik-Jedlinska A, Jakiela R A, Muszalski J and Strupinski W 2009 J. Cryst. Growth 311 4423
|
[23] |
Jasik A, Wnuk A, Wojcik-Jedlinska A, Jakiela R A, Muszalski J, Strupinski W and Bugajski M 2008 J. Cryst. Growth 310 2785 endfootnotesize
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|