Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(7): 077502    DOI: 10.1088/1674-1056/19/7/077502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Influence of the distance between two voltage contacts on giant magneto-impedance of Co-based amorphous wires

Zhang Shu-Ling(张树玲), Xing Da-Wei(邢大伟), and Sun Jian-Fei(孙剑飞)
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Abstract  The Co75 Fe4.2Si8B12Nb0.8 amorphous wires of 30 μ m in diameter are produced by melt extraction and annealing at 450 $^\circ$C for 20 min in vacuum with a longitudinal or transverse field of 40 kA/m. Distances between the two voltage contacts of 6, 5, 4 and 2 mm are obtained by moving the two voltage contacts towards the centre of the sample at the same time. Results indicate that magneto-impedance response is dependent on the distance significantly. As distance decreases from 6 to 2 mm,  $\Delta Z/Z$ reduces from 609% to 95% and giant magneto-impedance (GMI) profiles change from two-peak to single-peak. Besides, field sensitivity improves from 0.47%/(A/m) to 0.76%/(A/m) when the single-peak GMI just appears. It is therefore concluded that actual measurements can be made comparable only by taking into account the influence of distance between two voltage contacts for a magneto-impedance measurement.
Keywords:  GMI effect      amorphous wire      magnetic field anneal      domain structure  
Accepted manuscript online: 
PACS:  75.47.De (Giant magnetoresistance)  
  75.80.+q (Magnetomechanical effects, magnetostriction)  
  75.50.Kj (Amorphous and quasicrystalline magnetic materials)  
  81.20.-n (Methods of materials synthesis and materials processing)  
  81.40.Gh (Other heat and thermomechanical treatments)  

Cite this article: 

Zhang Shu-Ling(张树玲), Xing Da-Wei(邢大伟), and Sun Jian-Fei(孙剑飞) Influence of the distance between two voltage contacts on giant magneto-impedance of Co-based amorphous wires 2010 Chin. Phys. B 19 077502

[1] Mohri T K K, Kawashima K, Yoshida H and Panina L V 1992 IEEE Trans. Magn. 28 3150
[2] Phan M H and Peng H X 2008 Prog. Mater Sci. 53 323
[3] Panina L V and Mohri K 1994 Appl. Phys. Lett. 67 1189
[4] Beacha R S and Berkowitz A E 1994 Appl. Phys. Lett. 64 3652
[5] Melo L G C, Menard D, Yelon A, Ding L, Saez S and Dolabdjian C 2008 J. Appl. Phys. 103 033903
[6] Wang W J, Yuan H M, Jiang S, Xiao S Q and Yan S S 2006 Acta Phys. Sin. 55 6108 (in Chinese)
[7] Chen W P, Xiao S Q, Wang W J, Jiang S and Liu Y H 2005 Acta Phys. Sin. 54 2929 (in Chinese)
[8] Wang W J, Xiao S Q, Liu Y H, Chen W P, Dai Y Y, Jiang S, Yuan H M and Yan S S 2005 Acta Phys. Sin. 54 1821 (in Chinese)
[9] Ciureanu I K P, Melo L G C, Rudkowski P and Yelon A 2002 J. Magn. Magn. Mater. 245 305
[10] Vazquez M and Chen D X 1995 IEEE Trans. Magn. 31 1229
[11] Chen D X, Pascual L, Castano F J, Vazquez M and Hernando A 2001 IEEE Trans. Magn. 37 994
[12] Vazquez M, Li Y F and Chen D X 2002 J. Appl. Phys. 91 6539
[13] Chiriac V G H, and Corodeanu S 2006 IEEE Trans. Magn. 42 3359
[14] Jantaratana P and Sirisathitkul C 2006 IEEE Trans. Magn. 42 358
[15] Pan H L, Chen J K, Zhao Z J, He. J K, Ruan J Z, Yand X L and Yuan W Z 2008 Acta Phys. Sin. 57 3230 (in Chinese)
[16] Olsen J S 1994 Mater. Sci. Eng. A 178 239
[17] Mandal K, Sinha S and Kuma P A 2006 J. Appl. Phys. 99 033901
[18] Zhukova V, Usov N A, Zhukov A and Gonzalez J 2005 Phys. Rev. B 65 134407
[19] Zhukova V, Zhukov A, Garcia K, Kraposhin V, Prokoshin A, Gonzalez J and Vazquez M 2003 Sens. Acta. A 106 225
[20] Kraus L 2003 Sens. Acta. A 106 187
[21] Han M G, Ou Y, Liang D F and Deng L J 2009 Chin. Phys. B 18 1261
[22] Liang D F, Han M G, Yan B and Deng L J 2007 Chin. Phys. 16 0542 endfootnotesize
[1] Experimental observation of interlayer perpendicular standing spin wave mode with low damping in skyrmion-hosting [Pt/Co/Ta]10 multilayer
Zhen-Dong Chen(陈振东), Mei-Yang Ma(马眉扬), Sen-Fu Zhang(张森富), Mang-Yuan Ma(马莽原), Zi-Zhao Pan(潘咨兆), Xi-Xiang Zhang(张西祥), Xue-Zhong Ruan(阮学忠), Yong-Bing Xu(徐永兵), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2022, 31(11): 117501.
[2] Evolution of domain structure in Fe3GeTe2
Siqi Yin(尹思琪), Le Zhao(赵乐), Cheng Song(宋成), Yuan Huang(黄元), Youdi Gu(顾有地), Ruyi Chen(陈如意), Wenxuan Zhu(朱文轩), Yiming Sun(孙一鸣), Wanjun Jiang(江万军), Xiaozhong Zhang(章晓中), and Feng Pan(潘峰). Chin. Phys. B, 2021, 30(2): 027505.
[3] Evolution of magnetic domain structure of martensite in Ni-Mn-Ga films under the interplay of the temperature and magnetic field
Xie Ren (谢忍), Wei Jun (韦俊), Liu Zhong-Wu (刘仲武), Tang Yan-Mei (唐妍梅), Tang Tao (唐涛), Tang Shao-Long (唐少龙), Du You-Wei (都有为). Chin. Phys. B, 2014, 23(6): 068103.
[4] Monte Carlo simulation on dielectric relaxation and dipole cluster state in relaxor ferroelectrics
Zhu Chen(朱琛) and Liu Jun-Ming(刘俊明). Chin. Phys. B, 2010, 19(9): 097702.
[5] Vortex domain structures and dc current dependence of magneto-resistances in magnetic tunnel junctions
Wei Hong-Xiang (魏红祥), Lu Qing-Feng (路庆凤), Zhao Su-Fen (赵素芬), Zhang Xie-Qun (张谢群), Feng Jia-Feng (丰家峰), Han Xiu-Feng (韩秀峰). Chin. Phys. B, 2004, 13(9): 1553-1559.
[6] Domain structures of Nd13Fe80B7 magnets during HDDR process
Zhang Zhen-Rong (张臻蓉), Pang Zhi-Yong (庞智勇), Zhao Yi-Min (赵义敏), Zhang Zheng-Yi (张正义), Han Sheng-Hao (韩圣浩), Han Bao-Shan (韩宝善). Chin. Phys. B, 2003, 12(11): 1305-1309.
[7] Investigation of the magnetic domain structure of (PtCoPt)/Si multilayers by magnetic force microscopy
Zhang Zhen-Rong (张臻蓉), Liu Hong (刘洪), Han Bao-Shan (韩宝善). Chin. Phys. B, 2002, 11(6): 629-634.
No Suggested Reading articles found!