Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(6): 067302    DOI: 10.1088/1674-1056/19/6/067302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Piezoelectric effects and electronic structures of InAs/GaAs quantum dots grown along (111) and (011) directions

Zhao Wei(赵伟), Yu Zhong-Yuan(俞重远), and Liu Yu-Min(刘玉敏)
Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  Piezoelectric effects and electronic structures of InAs/GaAs quantum dots grown along (111) and (011) directions are investigated in this paper. The finite element method is used. Electronic energy levels are calculated by solving the three-dimensional effective mass Schr?dinger equation including a strain modified confinement potential and piezoelectric effects. The difference in electronic structure between quantum dots grown along the (111) direction and the (011) direction are compared. The cubic and truncated pyramidal shaped quantum dots are adopted.
Keywords:  quantum dot      electronic structure      piezoelectric effect  
Received:  05 August 2009      Accepted manuscript online: 
PACS:  77.65.-j (Piezoelectricity and electromechanical effects)  
  71.20.Nr (Semiconductor compounds)  
  73.21.La (Quantum dots)  
  73.63.Kv (Quantum dots)  
  81.07.Ta (Quantum dots)  
  71.18.+y (Fermi surface: calculations and measurements; effective mass, g factor)  
Fund: Project supported by the National High Technology Research and Development Program of China (Grant No. 2009AA03Z405) and the National Natural Science Foundation of China (Grant Nos. 60908028 and 60971068).

Cite this article: 

Zhao Wei(赵伟), Yu Zhong-Yuan(俞重远), and Liu Yu-Min(刘玉敏) Piezoelectric effects and electronic structures of InAs/GaAs quantum dots grown along (111) and (011) directions 2010 Chin. Phys. B 19 067302

[1] Yang M, Xu S J and Wang J 2008 Appl. Phys. Lett. 92 083112
[2] Leite M S, Medeiros R G, Kamins T I and Williams R S 2007 Phys. Rev. Lett. 98 165901
[3] Liu Y M, Yu Z Y and Ren X M 2009 Acta Phys. Sin. 58 66 (in Chinese)
[4] Liu Y M, Yu Z Y and Ren X M 2009 Chin. Phys. B 18 9
[5] Betcke M M and Voss H 2008 Nanotechnology 19 165204
[6] Wu H B, Xu S J and Wang J 2006 Phys. Rev. B 74 205329
[7] Sarusi G, Moshe O, Khatsevich S and Rich D H 2007 Phys. Rev. B 75 075306
[8] Kim J S, Jeong M S, Byeon C C, Ko D K and Lee J 2006 Appl. Phys. Lett. 88 241911
[9] Liu Y M, Yu Z Y, Ren X M and Xu Z H 2008 Chin. Phys. B 17 3471
[10] Ye H, Lu P F, Yu Z Y, Song Y X, Wang D L and Wang S M 2009 Nano Lett. 9 1921
[11] Liu Y M, Yu Z Y and Ren X M 2009 Chin. Phys. B 18 881
[12] Liu Y M, Yu Z Y, Ren X M and Xu Z H 2009 Chin. Phys. B 18 4136
[13] Yu Z Y and Liu Y M 2007 Proc. of SPIE Wuhan China November 1--5, 2007 p.~67821X
[14] Schliwa A, Winkelnkemper M and Bimberg D 2007 Phys. Rev. B 76 205324
[15] Migliorato M A, Powell D and Cullis A G 2006 Phys. Rev. B 74 245332
[16] Bester G, Wu X F, Vanderbilt D and Zunger A 2006 Phys. Rev. Lett. 96 187602
[17] Shin H, Kim J B, Yoo Y H, Lee W, Yoon E and Yu Y M 2006 J. Appl. Phys. 99 023521
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[4] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[5] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[6] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[7] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[8] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[9] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[10] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[11] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[12] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[13] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[14] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[15] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
No Suggested Reading articles found!