Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(6): 063403    DOI: 10.1088/1674-1056/19/6/063403
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Investigation of isotope effects of dynamic properties for H(D) +OF reactions by the quasi-classical trajectory method

Zhao Juan(赵娟), Xu Yan(许燕), and Meng Qing-Tian(孟庆田)
College of Physics and Electronics, Shandong Normal University, Jinan 250014, China
Abstract  Quasi-classical trajectory (QCT) calculations are employed to study the dynamic properties for H(D) + OF reactions on the adiabatic potential energy surface (PES) of the 1$^{3}$A$''$ triplet state. Obvious differences between the reaction probabilities for $J = 0$, integral cross sections for $J \ne 0$, branch ratios of the product and internuclear distances as well as product rotational alignments between the title reactions are found. These differences are attributed mainly to the different reduced masses of the reactants and the different zero-point energies (ZPEs) of the transition state.
Keywords:  isotope effects      H(D)+OF reactions      quasi-classical trajectory  
Received:  15 May 2009      Accepted manuscript online: 
PACS:  82.30.Cf (Atom and radical reactions; chain reactions; molecule-molecule reactions)  
  82.20.Tr (Kinetic isotope effects including muonium)  
  82.20.Fd (Collision theories; trajectory models)  
  82.20.Kh (Potential energy surfaces for chemical reactions)  
  82.20.Db (Transition state theory and statistical theories of rate constants)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.~10574083), the Natural Science Foundation of Shandong Province of China (Grant No.~Y2006A23), the National Basic Research Program of China (Grant No.~2006CB806000), and the O

Cite this article: 

Zhao Juan(赵娟), Xu Yan(许燕), and Meng Qing-Tian(孟庆田) Investigation of isotope effects of dynamic properties for H(D) +OF reactions by the quasi-classical trajectory method 2010 Chin. Phys. B 19 063403

[1] Rakestraw R J, McKendrick K G and Zare R N 1987 J. Chem. Phys. 87 7341
[2] Zhang R, Zande W J van der, Bronikowski M J and Zare R N 1991 J. Chem. Phys . 94 2704
[3] Ramachandran B 2000 J. Chem. Phys. 112 3680
[4] Hernández M L, Alvari?o J M, LaganàA , Rosi M and Sgamellotti A 2002 Int. J. Quantum Chem. 86 79
[5] Gogtas F 2006 Chem. Phys. 328 421
[6] Gómez-Carrasco S, González-Sánchez L, Aguado A, Paniagua M, Roncero O, Hernández M Luz and Alvari?o J M 2004 Chem. Phys. Lett. 383 25
[7] Gómez-Carrasco S, González-Sánchez L, Aguado A, Roncero O, Alvari?o J M and Hernández M L 2004 J. Chem. Phys. 121 4605
[8] González-Sánchez L, Gómez-Carrasco S, Aguado A, Paniagua M, Hernández M Luz, Alvarin?o J M and Roncero O 2004 Mol. Phys. 102 2381
[9] Gómez-Carrasco S and Roncero O 2006 J. Chem. Phys. 125 054102
[10] González-Sánchez L, Gómez-Carrasco S, Aguado A, Paniagua M, Hernández M Luz, Alvarin?o J M and Roncero O 2004 J. Chem. Phys. 121 309
[11] Gómez-Carrasco S, Roncero O, González-Sánchez L, Hemández M Luz, Alvari? o J M, Paniagua M and Aguado A 2005 J. Chem. Phys. 123 114310
[12] Gómez-Carrasco S, Aguado A, Paniagua M and Roncero O 2006 J. Chem. Phys. 125 164321
[13] Gómez-Carrasco S, Aguado A, Paniagua M and Roncero O 2007 J. Photoch. Photobio. A 190 145
[14] Gómez-Carrasco S, Hernández M L and Alvari?o J M 2007 Chem. Phys. Lett. 435 188
[15] Han K L and He G Z 2007 J. Photoch. Photobio. C 8 56
[16] Chu T S, Zhang Y and Han K L 2006 Int. Rev. Phys. Chem. 25 201
[17] Gogtas F 2008 J. Comput. Chem . 29 1889
[18] Meng Q T, Zhao J, Xu Y and Yue D G 2009 Chem. Phys. 362 65
[19] Zhao J, Xu Y and Meng Q T 2009 Can. J. Phys. 87 1247
[20] Xu Y, Zhao J, Yue D G, Liu H, Zheng X Y and Meng Q T 2009 Chin. Phys. B 18 5308
[21] Zhao J, Xu Y, Yue D G and Meng Q T 2009 Chem. Phys. Lett. 471 160
[22] Chu T S, Zhang H, Yuan S P, Fu A P, Si H Z, Tian F H and Duan Y B 2009 J. Phys. Chem. A 113 3470
[23] Varandas A J C, Caridade P J S B, Zhang Z H, Cui Q and Han K L 2006 J. Chem. Phys. 125 064312-11
[24] Ju L P, Han K L and Zhang Z H 2009 J. Comput. Chem. 30 305
[25] Chu T S and Han K L 2008 Phys. Chem. Chem. Phys. 10 2431
[26] Ju L P, Han K L and Zhang Z H 2006 Theor. Comp. Chem. 5 769
[27] Huarte-Larra?aga F and Manthe U 2002 J. Chem. Phys. 116 2863
[28] Huarte-Larra?aga F and Manthe U 2002 J. Chem. Phys. 117 4635
[29] Zhao J, Xu Y and Meng Q T 2009 J. Phys. B 42 165006
[30] Zhang D H and Zhang Z H 1995 Chem. Phys. Lett. 232 370
[31] Alexander A J, Aoiz F J, Brouard M and Simons J P 1996 Chem. Phys. Lett. 256 561
[32] Chichinin A I 2000 Chem. Phys. Lett. 316 425
[33] Sun G H, Yang X D, Zhu J and Wang C X 2002 Chin. Phys. 11 910
[34] Chen M D, Han K L and Lou N Q 2002 Chem. Phys. Lett. 357 483
[35] Liu Y F, Zhu Z L, Sun J F, Cong S L and Han K L 2003 Chin. Phys. 12 750
[36] Li W L, Wang M S, Yang C L, Liu W W, Sun C and Ren T Q 2007 Chem. Phys. 337 93
[37] Li W L, Wang M S, Yang C L, Guang M X, Wang D H and Liu W W 2007 Chem. Phys. Lett. 445 125
[38] Li W L, Wang M S, Dong Y M and Yang C L 2008 Chem. Phys. 348 97
[39] Lin S Y, Han K L and Zhang Z H 2000 Chem. Phys. Lett. 324 122
[40] Kong H, Liu X G, Liang J J, Xu W W and Zhang Q G 2009 Acta Phys. Sin. 58 6926 (in Chinese)
[41] Murrell J N, Carter S, Farantos S C, Huxley P and Varandas A J C 1984 Molecular Potential Energy Functions (London: John Wiley &Sons Ltd.) p.~29
[42] Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699
[43] Wang M L, Han K L and He G Z 1998 J. Phys. Chem. A 102 10204
[44] Chen M D, Han K L and Lou N Q 2003 J. Chem. Phys. 118 4463
[45] Wang M L, Han K L and He G Z 1998 J. Chem. Phys. 109 5446
[46] Zhang X and Han K L 2006 Int. J. Quantum Chem. 106 1815
[47] Fu Y B, Luo W L, Ruan W, Zhang L and Zhu Z H 2009 Chin. Phys. B 18 167
[1] Effect of isotope on state-to-state dynamics for reactive collision reactions O(3P)+H2+→OH++H and O(3P)+H2+→OH+H+ in ground state 12A" and first excited 12A' potential energy surfaces
Juan Zhao(赵娟), Ting Xu(许婷), Lu-Lu Zhang(张路路), Li-Fei Wang(王立飞). Chin. Phys. B, 2020, 29(2): 023105.
[2] Quasi-classical trajectory study of H+LiH (v=0, 1, 2, j=0)→Li+H2 reaction on a new global potential energy surface
Yu-Liang Wang(王玉良), De-Zhi Su(宿德志), Cun-Hai Liu(刘存海), Hui Li(李慧). Chin. Phys. B, 2019, 28(8): 083402.
[3] Dynamics of the Au+H2 reaction by time-dependent wave packet and quasi-classical trajectory methods
Yong Zhang(张勇), Chengguo Jiang(姜成果). Chin. Phys. B, 2019, 28(12): 123101.
[4] Dynamics of the CH4+O(3P)→CH3(ν=0)+OH(ν'=0) reaction
Zhong-An Jiang(蒋仲安), Ya Peng(彭亚), Ju-Shi Chen(陈举师), Gui Lan(兰桂), Hao-Yu Lin(林浩宇). Chin. Phys. B, 2018, 27(6): 063401.
[5] Theoretical study of the radiative decay processes in H+(D+, T+)-Be collisions
Huilin Wei(魏惠琳), Xiaojun Liu(刘晓军). Chin. Phys. B, 2018, 27(12): 123101.
[6] Intrinsic product polarization and branch ratio in theS(1D, 3P)+HD reaction on three electronic states
Lin Li(李琳), Shunle Dong(董顺乐). Chin. Phys. B, 2016, 25(9): 093401.
[7] Effects of collision energy and rotational quantum number on stereodynamics of the reactions: H(2S)+NH(v=0, j=0, 2, 5, 10)→N(4S)+H2
Wei Wang(王伟), Yong-Jiang Yu(于永江), Gang Zhao(赵刚), Chuan-Lu Yang(杨传路). Chin. Phys. B, 2016, 25(8): 083402.
[8] Quasi-classical trajectory study of collision energy effect on the stereodynamics of H + BrO→O + HBr reaction
Xie Ting-Xian (解廷献), Zhang Ying-Ying (张莹莹), Shi Ying (石英), Li Ze-Rui (李泽瑞), Jin Ming-Xing (金明星). Chin. Phys. B, 2015, 24(4): 043402.
[9] Theoretical prediction of energy dependence for D+BrO→DBr+O reaction: The rate constant and product rotational polarization
Zhang Ying-Ying (张莹莹), Xie Ting-Xian (解廷献), Li Ze-Rui (李泽瑞), Shi Ying (石英), Jin Ming-Xing (金明星). Chin. Phys. B, 2015, 24(3): 038201.
[10] Quasi-classical trajectory study of the isotope effect on the stereodynamics in the reaction H(2S)+CH(X2Π; v=0, j=1)→C(1D)+H2(X1Σg+)
Wang Yun-Hui (王允辉), Xiao Chuan-Yun (肖传云), Deng Kai-Ming (邓开明), Lu Rui-Feng (陆瑞锋). Chin. Phys. B, 2014, 23(4): 043401.
[11] Quasi-classical trajectory investigation on the stereodynamics of Li+DF (v=1-6, j=0)→LiF+D reaction
Zhang Ying-Ying (张莹莹), Li Shu-Juan (李淑娟), Shi Ying (石英), Xie Ting-Xian (解廷献), Jin Ming-Xing (金明星). Chin. Phys. B, 2014, 23(12): 123402.
[12] Theoretical study of stereodynamics for the N+H2/D2/T2 reactions
Li Yong-Qing (李永庆), Zhao Jin-Feng (赵金峰), Zhang Yong-Jia (张永嘉), Chi Xiao-Lin (迟晓琳), Ding Yong (丁勇), Ma Feng-Cai (马凤才). Chin. Phys. B, 2014, 23(12): 123401.
[13] The reagent vibrational excitation effect on the stereodynamics of the reaction O(1D)+HBr→OH+Br
Zhang Ying-Ying (张莹莹), Shi Ying (石英), Xie Ting-Xian (解廷献), Jin Ming-Xing (金明星), Hu Zhan (胡湛). Chin. Phys. B, 2013, 22(8): 083402.
[14] The stereodynamic properties of the F + HO (v, j)→HF + O reaction on the 1A' and 3A' potential energy surfaces by quasi-classical trajectory: Initial excitation effect (v =1-3, j = 0 and v = 0, j =1-3)
Zhao Dan (赵丹), Chu Tian-Shu (楚天舒), Hao Ce (郝策). Chin. Phys. B, 2013, 22(6): 063401.
[15] The effect of collision energy on the stereo-dynamics of the reaction H(2S)+NH(X3-, v=0, j=0)→N(4S)+H2
He Di (何缔), Wang Mei-Shan (王美山), Yang Chuan-Lu (杨传路), Jiang Zhi-Jun (姜志军). Chin. Phys. B, 2013, 22(6): 068201.
No Suggested Reading articles found!