Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(5): 056104    DOI: 10.1088/1674-1056/19/5/056104
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

First-principles study of electronic and optical properties in wurtzite Zn1-xCuxO

Zhao Long(赵龙), Lu Peng-Fei(芦鹏飞), Yu Zhong-Yuan(俞重远), Liu Yu-Min(刘玉敏), Wang Dong-Lin(王东林), and Ye Han(叶寒)
Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), Ministry of Education, Beijing 100876, China
Abstract  We perform a first-principles simulation to study the electronic and optical properties of wurtzite Zn1xCuxO. The simulations are based upon the Perdew--Burke--Ernzerhof form of generalised gradient approximation within the density functional theory. Calculations are carried out in different concentrations. With increasing Cu concentration, the band gap of Zn1xCuxO decreases due to the shift of valence band. The imaginary part of the dielectric function indicates that the optical transition between O 2p states in the highest valence band and Zn 4s states in the lowest conduction band shifts to the low energy range as the Cu concentration increases. Besides, it is shown that the insertion of Cu atom leads to redshift of the optical absorption edge. Meanwhile, the optical constants of pure ZnO and Zn0.75Cu0.25O, such as loss function, refractive index and reflectivity, are discussed.
Keywords:  density functional theory      Cu-doped ZnO      electronic structure      optical properties  
Received:  19 July 2009      Revised:  23 October 2009      Accepted manuscript online: 
PACS:  71.20.Nr (Semiconductor compounds)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  61.66.Fn (Inorganic compounds)  
  78.40.Fy (Semiconductors)  
Fund: Project supported by the National High Technology Research and Development Program of China (Grant No.~2009AA03Z405), the National Natural Science Foundation of China (Grant Nos.~60908028 and 60971068) and the Chinese Universities Scientific Fund (Grant No.~BUPT2009RC0412).

Cite this article: 

Zhao Long(赵龙), Lu Peng-Fei(芦鹏飞), Yu Zhong-Yuan(俞重远), Liu Yu-Min(刘玉敏), Wang Dong-Lin(王东林), and Ye Han(叶寒) First-principles study of electronic and optical properties in wurtzite Zn1-xCuxO 2010 Chin. Phys. B 19 056104

[1] Lorenz M, Kaidashev E M, Rahm A, Nobis T, Lenzner J, Wagner G, Spemann D, Hochmuth H and Grundmann M 2005 Appl. Phys. Lett. 86 143113
[2] Hsu H C, Wu C Y, Cheng H M and Hsieh W F 2006 Appl. Phys. Lett. 89 013101
[3] Chen D H, Guo J, Huang D, Li G X and Shao Y Z 2008 Acta Phys. Sin. 57 1078 (in Chinese)
[4] Bi Y J, Dong Y C, Guo Z Y, Lin Z and Sun H Q 2008 Acta Phys. Sin. 57 7800 (in Chinese)
[5] Cox S F J, Davis E A, Cottrell S P, King P J C, Lord J S, Gil J M, Alberto H V, Vilao R C, Duarte J P, Ayres de Campos N, Weidinger A, Lichti R L and Irvine S J C 2000 Phys. Rev. Lett. 86 2601
[6] van de Walle C G 2000 Phys. Rev. Lett. 85 1012
[7] Kohan A F, Ceder G, Morgan D and van de Walle C G 2000 Phys. Rev. B 61 15019
[8] Zhang S B, Wei S H and Zunger A 2001 Phys. Rev. B 63 075205
[9] Cai Y R, Ding R X, Shi L C, Song J X, Wu J and Yang Y T 2008 Acta Phys. Sin. 57 7151 (in Chinese)
[10] Zhang X D, Guo M L, Li W X and Liu C L 2008 J. Appl. Phys. 103 063721
[11] Qiu D J, Feng C M, Feng A M and Wu H Z 2008 Chin. Phys. B 17 0690
[12] Ahn K S, Deutsch T, Yan Y F, Jiang C S, Perkins C L, Turner J and Mowafak A J 2007 J. Appl. Phys. 102 023517
[13] Xiong Z H and Jiang F Y 2007 J. Phys. Chem. Solids 68 1500
[14] Chen Q Y, Dong C J, Duan M Y, Hu Z G, Xu M and Zhou H P 2008 Chin. Phys. B 17 6520
[15] Lin S S, Lu J G, Ye Z Z, He H P, Gu X Q, Chen L X, Huang J Y and Zhao B H 2008 Solid State Commun. 148 25
[16] Thomas M A and Cui J B 2009 J. Appl. Phys. 105 093533
[17] Samanta K, Bhattacharya P and Katiyar R S 2009 J. Appl. Phys. 105 113929
[18] Ando K, Saito H, Jin Z, Fukumura T, Kawaski M, Matsumoto Y and Koinuma H 2001 J. Appl. Phys. 89 7284
[19] Buchholz D B, Chang R P H, Song J H and Kettersom J B 2005 Appl. Phys. Lett. 87 082504
[20] Ye L H, Freeman A J and Delley B 2006 Phys. Rev. B 73 033203
[21] Park M S and Min B I 2003 Phys. Rev. B 68 224436
[22] Charkraborti D, Narayan J and Prater J T 2007 Appl. Phys. Lett. 90 062504
[23] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[24] Payne M C, Teter M P, Allan D C, Arias T A and Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045
[25] Hamann D R, Schl\"{Uter M and Chiang C 1979 Phys. Rev. Lett. 43 1494
[26] Sun J, Zhou X F, Fan Y X, Chen J, Wang H T, Guo X, He J and Tian Y 2006 Phys. Rev. B 73 045108
[27] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[28] Wyckoff R W G 1982 Crystal Structures 2nd ed. (Malabar, FL: Krieger) Vol. 1
[29] Huang L M, Rosa A L and Ahuja R 2006 Phys. Rev. B 74 075206
[30] Tang X, L\"{U H F, Ma C Y, Zhao J J and Zhang Q Y 2008 Acta Phys. Sin. 57 1066 (in Chinese)
[31] Decremps F, Datchi F, Saitta A M and Polian A 2003 Phys. Rev. B 68 104101
[32] Jaffe J E, Snyder J A, Lin Z J and Hess A C 2000 Phys. Rev. B 62 1660
[33] Zhang X D, Guo M L, Li W X and Liu C L 2008 J. Appl. Phys. 103 063721
[34] Sun J, Wang H T, He J and Tian Y 2005 Phys. Rev. B 71 125132
[35] Li J, Wei S H, Li S H and Xia J B 2006 Phys. Rev. B 74 081201
[36] Zhang X D, Guo M L, Li W X and Liu C L 2008 J. Appl. Phys. 103 063721
[37] Xu M, Zhao H, K. Ostrikov, Duan M Y and Xu L X 2009 J. Appl. Phys. 105 043708
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[4] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[5] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[6] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[7] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[8] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[9] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[10] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[11] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[12] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[13] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[14] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[15] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
No Suggested Reading articles found!