First-principles study of electronic and optical properties in wurtzite Zn1-xCuxO
Zhao Long(赵龙), Lu Peng-Fei(芦鹏飞), Yu Zhong-Yuan(俞重远)†, Liu Yu-Min(刘玉敏), Wang Dong-Lin(王东林), and Ye Han(叶寒)
Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), Ministry of Education, Beijing 100876, China
Abstract We perform a first-principles simulation to study the electronic and optical properties of wurtzite ZnCuO. The simulations are based upon the Perdew--Burke--Ernzerhof form of generalised gradient approximation within the density functional theory. Calculations are carried out in different concentrations. With increasing Cu concentration, the band gap of ZnCuO decreases due to the shift of valence band. The imaginary part of the dielectric function indicates that the optical transition between O 2p states in the highest valence band and Zn 4s states in the lowest conduction band shifts to the low energy range as the Cu concentration increases. Besides, it is shown that the insertion of Cu atom leads to redshift of the optical absorption edge. Meanwhile, the optical constants of pure ZnO and ZnCuO, such as loss function, refractive index and reflectivity, are discussed.
Fund: Project supported by the National
High Technology Research and Development Program of China (Grant
No.~2009AA03Z405), the National Natural Science Foundation of China
(Grant Nos.~60908028 and 60971068) and the Chinese Universities
Scientific Fund (Grant No.~BUPT2009RC0412).
Cite this article:
Zhao Long(赵龙), Lu Peng-Fei(芦鹏飞), Yu Zhong-Yuan(俞重远), Liu Yu-Min(刘玉敏), Wang Dong-Lin(王东林), and Ye Han(叶寒) First-principles study of electronic and optical properties in wurtzite Zn1-xCuxO 2010 Chin. Phys. B 19 056104
[1]
Lorenz M, Kaidashev E M, Rahm A, Nobis T, Lenzner J, Wagner G, Spemann D, Hochmuth H and Grundmann M 2005 Appl. Phys. Lett. 86 143113
[2]
Hsu H C, Wu C Y, Cheng H M and Hsieh W F 2006 Appl. Phys. Lett. 89 013101
[3]
Chen D H, Guo J, Huang D, Li G X and Shao Y Z 2008 Acta Phys. Sin. 57 1078 (in Chinese)
[4]
Bi Y J, Dong Y C, Guo Z Y, Lin Z and Sun H Q 2008 Acta Phys. Sin. 57 7800 (in Chinese)
[5]
Cox S F J, Davis E A, Cottrell S P, King P J C, Lord J S, Gil J M, Alberto H V, Vilao R C, Duarte J P, Ayres de Campos N, Weidinger A, Lichti R L and Irvine S J C 2000 Phys. Rev. Lett. 86 2601
[6]
van de Walle C G 2000 Phys. Rev. Lett. 85 1012
[7]
Kohan A F, Ceder G, Morgan D and van de Walle C G 2000 Phys. Rev. B 61 15019
[8]
Zhang S B, Wei S H and Zunger A 2001 Phys. Rev. B 63 075205
[9]
Cai Y R, Ding R X, Shi L C, Song J X, Wu J and Yang Y T 2008 Acta Phys. Sin. 57 7151 (in Chinese)
[10]
Zhang X D, Guo M L, Li W X and Liu C L 2008 J. Appl. Phys. 103 063721
[11]
Qiu D J, Feng C M, Feng A M and Wu H Z 2008 Chin. Phys. B 17 0690
[12]
Ahn K S, Deutsch T, Yan Y F, Jiang C S, Perkins C L, Turner J and Mowafak A J 2007 J. Appl. Phys. 102 023517
[13]
Xiong Z H and Jiang F Y 2007 J. Phys. Chem. Solids 68 1500
[14]
Chen Q Y, Dong C J, Duan M Y, Hu Z G, Xu M and Zhou H P 2008 Chin. Phys. B 17 6520
[15]
Lin S S, Lu J G, Ye Z Z, He H P, Gu X Q, Chen L X, Huang J Y and Zhao B H 2008 Solid State Commun. 148 25
[16]
Thomas M A and Cui J B 2009 J. Appl. Phys. 105 093533
[17]
Samanta K, Bhattacharya P and Katiyar R S 2009 J. Appl. Phys. 105 113929
[18]
Ando K, Saito H, Jin Z, Fukumura T, Kawaski M, Matsumoto Y and Koinuma H 2001 J. Appl. Phys. 89 7284
[19]
Buchholz D B, Chang R P H, Song J H and Kettersom J B 2005 Appl. Phys. Lett. 87 082504
[20]
Ye L H, Freeman A J and Delley B 2006 Phys. Rev. B 73 033203
[21]
Park M S and Min B I 2003 Phys. Rev. B 68 224436
[22]
Charkraborti D, Narayan J and Prater J T 2007 Appl. Phys. Lett. 90 062504
[23]
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[24]
Payne M C, Teter M P, Allan D C, Arias T A and Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045
[25]
Hamann D R, Schl\"{Uter M and Chiang C 1979 Phys. Rev. Lett. 43 1494
[26]
Sun J, Zhou X F, Fan Y X, Chen J, Wang H T, Guo X, He J and Tian Y 2006 Phys. Rev. B 73 045108
[27]
Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[28]
Wyckoff R W G 1982 Crystal Structures 2nd ed. (Malabar, FL: Krieger) Vol. 1
[29]
Huang L M, Rosa A L and Ahuja R 2006 Phys. Rev. B 74 075206
[30]
Tang X, L\"{U H F, Ma C Y, Zhao J J and Zhang Q Y 2008 Acta Phys. Sin. 57 1066 (in Chinese)
[31]
Decremps F, Datchi F, Saitta A M and Polian A 2003 Phys. Rev. B 68 104101
[32]
Jaffe J E, Snyder J A, Lin Z J and Hess A C 2000 Phys. Rev. B 62 1660
[33]
Zhang X D, Guo M L, Li W X and Liu C L 2008 J. Appl. Phys. 103 063721
[34]
Sun J, Wang H T, He J and Tian Y 2005 Phys. Rev. B 71 125132
[35]
Li J, Wei S H, Li S H and Xia J B 2006 Phys. Rev. B 74 081201
[36]
Zhang X D, Guo M L, Li W X and Liu C L 2008 J. Appl. Phys. 103 063721
[37]
Xu M, Zhao H, K. Ostrikov, Duan M Y and Xu L X 2009 J. Appl. Phys. 105 043708
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.