Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 024502    DOI: 10.1088/1674-1056/ac2b18
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Modeling the heterogeneous traffic flow considering the effect of self-stabilizing and autonomous vehicles

Yuan Gong(公元) and Wen-Xing Zhu(朱文兴)
School of Control Science and Engineering, Shandong University, Jinan 250061, China
Abstract  With the increasing maturity of automatic driving technology, the homogeneous traffic flow will gradually evolve into the heterogeneous traffic flow, which consists of human-driving and autonomous vehicles. To better study the characteristics of the heterogeneous traffic system, this paper proposes a new car-following model for autonomous vehicles and heterogeneous traffic flow, which considers the self-stabilizing effect of vehicles. Through linear and nonlinear methods, this paper deduces and analyzes the stability of such a car-following model with the self-stabilizing effect. Finally, the model is verified by numerical simulation. Numerical results show that the self-stabilizing effect can make the heterogeneous traffic flow more stable, and that increasing the self-stabilizing coefficient or historical time length can strengthen the stability of heterogeneous traffic flow and alleviate traffic congestion effectively. In addition, the heterogeneous traffic flow can also be stabilized with a higher proportion of autonomous vehicles.
Keywords:  heterogeneous traffic flow      self-stabilizing effect      car-following model      autonomous vehicle  
Received:  16 August 2021      Revised:  24 September 2021      Accepted manuscript online:  29 September 2021
PACS:  45.70.Vn (Granular models of complex systems; traffic flow)  
  05.70.Fh (Phase transitions: general studies)  
  05.70.Jk (Critical point phenomena)  
  89.40.-a (Transportation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61773243), the Major Technology Innovation Project of Shandong Province, China (Grant No. 2019TSLH0203), and the National Key Research and Development Program of China (Grant No. 2020YFB1600501).
Corresponding Authors:  Wen-Xing Zhu     E-mail:  zhuwenxing@sdu.edu.cn

Cite this article: 

Yuan Gong(公元) and Wen-Xing Zhu(朱文兴) Modeling the heterogeneous traffic flow considering the effect of self-stabilizing and autonomous vehicles 2022 Chin. Phys. B 31 024502

[1] Pipes L A 1953 J. Appl. Phys. 24 274
[2] Bando M, Hasebe K, Nakayama A, Shibata A and Sugiyama Y 1995 Phys. Rev. E 51 1035
[3] Nagatani T 1999 Phys. Rev. E 60 6395
[4] Sawada S 2001 J. Phys. Math. Gen. 34 11253
[5] Jiang R, Wu Q and Zhu Z 2001 Phys. Rev. E 64 017101
[6] Ge H X, Zhu H B and Dai S Q 2006 Eur. Phys. J. B 54 503
[7] Li Z P and Liu Y C 2006 Eur. Phys. J. B 53 367
[8] Peng G H, Cai X H, Liu C Q, Cao B F and Tuo M X 2011 Phys. Lett. A 375 3973
[9] Liu Y J, Zhang H L and He L 2012 Chin. Phys. Lett. 29 104502
[10] Yu S, Liu Q and Li X 2013 Commun. Nonlinear Sci. Numer. Simul. 18 1229
[11] Tang T, Shi W, Shang H and Wang Y 2014 Nonlinear Dyn. 76 2017
[12] Tang T Q, Li J G, Huang H J and Yang X B 2014 Measurement 48 63
[13] Li Z, Li W, Xu S and Qian Y 2015 Nonlinear Dyn. 80 529
[14] Li Z, Qin Q, Li W, Xu S, Qian Y and Sun J 2018 Nonlinear Dyn. 91 1113
[15] Peng G, Lu W, He H and Gu Z 2016 Commun. Nonlinear Sci. Numer. Simul. 40 197
[16] Liu F, Cheng R, Ge H and Yu C 2016 Physica A 464 267
[17] Ou H, Tang T Q, Zhang J and Zhou J M 2018 Physica A 505 105
[18] Zhang J, Tang T Q and Yu S W 2018 Physica A 492 1831
[19] Chen C, Ge H and Cheng R 2019 Physica A 535 122423
[20] Sun Y, Ge H and Cheng R 2019 Physica A 521 752
[21] Liao P, Tang T Q, Wang T and Zhang J 2019 Physica A 525 108
[22] Kuang H, Wang M T, Lu F H, Bai K Z and Li X L 2019 Physica A 527 121268
[23] An S, Xu L, Chen G and Shi Z 2020 Mod. Phys. Lett. B 34 2050182
[24] Li S, Cheng R and Ge H 2020 Physica A 558 125015
[25] Peng G H 2020 Chin. Phys. B 29 084501
[26] Peng Y, Liu S and Yu D Z 2020 Physica A 538 122967
[27] Ma M, Ma G and Liang S 2021 Appl. Math. Model. 94 1
[28] Cheng R, Li S and Ge H 2021 Mod. Phys. Lett. B 35 2150238
[29] Kuang H, Lu F H, Yang F L, Peng G H and Li X L 2021 Int. J. Mod. Phys. C 32 2150095
[30] Zhou Y and Ahn S 2019 Transp. Res. Part B 125 175
[31] Xu S and Peng H 2020 IEEE Trans. Intell. Transp. Syst. 21 48
[32] Xu C, Zhao W and Wang C 2020 IEEE Trans. Intell. Transp. Syst. 21 2510
[33] Xia Y, Qu Z, Sun Z and Li Z 2021 IEEE Trans. Veh. Technol. 70 4178
[34] Tang T Q, Gui Y and Zhang J 2021 IEEE Trans. Intell. Transp. Syst.
[35] Bose A and Ioannou P A 2003 IEEE Trans. Intell. Transp. Syst. 4 173
[36] Ngoduy D 2013 Commun. Nonlinear Sci. Numer. Simul. 18 2699
[37] Zhu W X and Zhang H M 2018 Physica A 496 274
[38] Gong S and Du L 2018 Transp. Res. Part B 116 25
[39] Navas F and Milanés V 2019 Transp. Res. Part C 108 167
[40] Xie D F, Zhao X M and He Z 2019 IEEE Trans. Intell. Transp. Syst. 20 2060
[41] Di Vaio M, Fiengo G, Petrillo A, Salvi A, Santini S and Tufo M 2019 IEEE Trans. Intell. Transp. Syst. 20 4339
[42] An S, Xu L, Qian L, Chen G, Luo H and Li F 2020 Physica A 560 125246
[43] Wang J, Zheng Y, Xu Q, Wang J and Li K 2021 IEEE Trans. Intell. Transp. Syst. 22 7445
[44] Zheng F, Liu C, Liu X, Jabari S E and Lu L 2020 Transp. Res. Part C 112 203
[45] Wang S, Yu B and Wu M 2021 IEEE Trans. Intell. Transp. Syst.
[46] Montanino M and Punzo V 2021 Transp. Res. Part B 144 133
[47] Yao Z, Xu T, Jiang Y and Hu R 2021 Physica A 561 125218
[48] Guo J, Cheng S and Liu Y 2021 IEEE Trans. Intell. Transp. Syst. 22 1639
[49] Cui S, Cao F, Yu B and Yao B 2021 IEEE Trans. Intell. Transp. Syst.
[50] Chen C, Xu Z and Kuang H 2017 J. Guangxi Normal University (Natural Science Edition) 35 14 (in Chinese)
[51] Zhu W X and Zhang L D 2014 Int. J. Mod. Phys. C 25 1450018
[1] A novel car-following model by sharing cooperative information transmission delayed effect under V2X environment and its additional energy consumption
Guang-Han Peng(彭光含), Te-Ti Jia(贾特提), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2022, 31(5): 058901.
[2] Modeling and analysis of car-following behavior considering backward-looking effect
Dongfang Ma(马东方), Yueyi Han(韩月一), Fengzhong Qu(瞿逢重), and Sheng Jin(金盛). Chin. Phys. B, 2021, 30(3): 034501.
[3] Stabilization strategy of a car-following model with multiple time delays of the drivers
Weilin Ren(任卫林), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2021, 30(12): 120506.
[4] Heterogeneous traffic flow modeling with drivers' timid and aggressive characteristics
Cong Zhai(翟聪), Weitiao Wu(巫威眺), and Songwen Luo(罗淞文). Chin. Phys. B, 2021, 30(10): 100507.
[5] Nonlinear density wave and energy consumption investigation of traffic flow on a curved road
Zhizhan Jin(金智展), Rongjun Cheng(程荣军), Hongxia Ge(葛红霞). Chin. Phys. B, 2017, 26(11): 110504.
[6] A new coupled map car-following model considering drivers’ steady desired speed
Zhou Tong (周桐), Sun Di-Hua (孙棣华), Li Hua-Min (李华民), Liu Wei-Ning (刘卫宁). Chin. Phys. B, 2014, 23(5): 050203.
[7] A control method applied to mixed traffic flow for the coupled-map car-following model
Cheng Rong-Jun (程荣军), Han Xiang-Lin (韩祥临), Lo Siu-Ming (卢兆明), Ge Hong-Xia (葛红霞). Chin. Phys. B, 2014, 23(3): 030507.
[8] An improved car-following model with consideration of the lateral effect and its feedback control research
Zheng Ya-Zhou (郑亚周), Zheng Peng-Jun (郑彭军), Ge Hong-Xia (葛红霞). Chin. Phys. B, 2014, 23(2): 020503.
[9] Feedback control scheme of traffic jams based on the coupled map car-following model
Zhou Tong (周桐), Sun Di-Hua (孙棣华), Zhao Min (赵敏), Li Hua-Min (李华民). Chin. Phys. B, 2013, 22(9): 090205.
[10] A new coupled-map car-following model based on a transportation supernetwork framework
Yao Jing (姚静), Huang Jing-Yi (黄婧祎), Chen Guan-Rong (陈关荣), Xu Wei-Sheng (许维胜). Chin. Phys. B, 2013, 22(6): 060208.
[11] Simulation optimization for train movement on single-track railway
Ye Jing-Jing (叶晶晶), Li Ke-Ping (李克平). Chin. Phys. B, 2013, 22(5): 050205.
[12] Modified coupled map car-following model and its delayed feedback control scheme
Ge Hong-Xia(葛红霞) . Chin. Phys. B, 2011, 20(9): 090502.
[13] Efficiency promotion for an on-ramp system based on intelligent transportation system information
Xie Dong-Fan(谢东繁), Gao Zi-You(高自友), and Zhao Xiao-Mei(赵小梅). Chin. Phys. B, 2010, 19(8): 080515.
[14] Simulating train movement in railway traffic using a car-following model
Li Ke-Ping(李克平) and Guan Li-Jia(管立加). Chin. Phys. B, 2009, 18(6): 2200-2204.
[15] A new car-following model with consideration of the traffic interruption probability
Tang Tie-Qiao(唐铁桥), Huang Hai-Jun(黄海军), Wong S. C.(黄仕进), and Jiang Rui(姜锐). Chin. Phys. B, 2009, 18(3): 975-983.
No Suggested Reading articles found!