A novel car-following model by sharing cooperative information transmission delayed effect under V2X environment and its additional energy consumption
Guang-Han Peng(彭光含)1,†, Te-Ti Jia(贾特提)1, Hua Kuang(邝华)1, Hui-Li Tan(谭惠丽)1, and Tao Chen(陈陶)2
1 College of Physical Science and Technology, Guangxi Normal University, Guilin 541004, China; 2 Boyuan Scientific Instruments (Zhenjiang) Co., Ltd, Zhenjiang 212003, China
Abstract A novel car-following model is offered based on the cooperative information transmission delayed effect involving headway and velocity under V2X environment. The stability conditions and mKdV equation of the new model are obtained via the linear and nonlinear analysis. Through numerical simulation, the variation trend of headway and hysteresis phenomenon are studied. In addition, we investigate the additional energy consumption of the vehicle during acceleration. In brief, theoretical analysis and simulation results confirm that the new car-following model based on the cooperative information transmission delayed effect can improve traffic stability and reduce additional energy consumption.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.61963008,61673168,11762004,and 12047567),the Guangxi Natural Science Foundation,China (Grant Nos.2022GXNSFDA035080 and 2018GXNSFAA281274),the Guangxi Innovation-Driven Development Special Fund Project,China (Grant No.GUIKEAA19254034-3),and the Zhenjiang Science and Technology Project,China (Grant No.GY2020019).
Guang-Han Peng(彭光含), Te-Ti Jia(贾特提), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶) A novel car-following model by sharing cooperative information transmission delayed effect under V2X environment and its additional energy consumption 2022 Chin. Phys. B 31 058901
[1] Chandler R E, Herman R and Montroll E W 1958 Oper. Res.6 165 [2] Gazis D C, Herman R and Rothery R W 1961 Oper. Res.9 545 [3] Bando M, Hasebe K, Nakayama A, Shibata A and Sugoyama Y 1995 Phys. Rev. E51 1035 [4] Tang T Q, Yi Z Y, Zhang J and Zheng N 2017 IET. Intell. Transp. Syst.11 596 [5] Zheng Y Z, Zheng P J and Ge H X 2014 Chin. Phys. B23 020503 [6] Tian J F, Jia B, Li X G and Gao Z Y 2010 Chin. Phys. B19 010511 [7] Zhang G, Zhao M, Sun D H, Liu W N and Li H M 2016 Physica A442 532 [8] Zhu W X and Zhang L D 2018 Physica A492 2154 [9] Ma G Y, Ma M H, Liang S D, Wang Y S and Zhang Y Z 2020 Commun. Nonlinear Sci. Numer. Simulat.85 105221 [10] Zhao H T, Zhao X, Lu J C and Xin L Y 2020 J. Comput. Sci-neth.47 101221 [11] Jetto K, Tahiri Z, Benyoussef A and Kenz A E 2020 Acc. Anal. Prev.142 105507 [12] Kong D W, Sun L S, Li J and Xu Y 2021 Physica A562 125329 [13] Zeng J W, Qian Y S, Mi P F, Zhang C Y, Yin F, Zhu L P and Xu D J 2021 Physica A562 125387 [14] Zhao H T, Lin L, Xu C P, Li Z X and Zhao X 2020 Physica A553 124213 [15] Yang L, Zheng J L, Cheng Y and Ran B 2019 Physica A535 122277 [16] Nagatani T 1998 Physica A261 599 [17] Nagatani T 1999 Physica A264 581 [18] Nagatani T 1999 Physica A265 297 [19] Wang T, Gao Z Y and Zhao X M 2012 Chin. Phys. B21 020512 [20] Zhang Y C, Zhao M, Sun D H, Wang S H, Shuai H and Chen D 2021 Commun. Nonlinear Sci. Numer. Simulat.94 105541 [21] Qin S D, Ge H X and Cheng R J 2018 Chin. Phys. B27 050503 [22] Li L X, Cheng R J and Ge H X 2021 Physica A561 125295 [23] Helbing D and Tilch B 1998 Phys. Rev. E58 133 [24] Jiang R, Wu Q S and Zhu Z J 2001 Phys. Rev. E64 017101 [25] Backfrieder C, Ostermayer G and Mecklenbrauker C F 2016 IEEE Trans. Intell. Transp. Syst.18 349 [26] Zhang K L, Yang A S, Su H, De La Fortelle A and Wu X 2016 IEEE 19th Int. Conf. Intel. Trans. Syst. (ITSC), p. 1192 [27] Ma C X, Hao W, Wang A and Zhao H X 2018 IEEE Access6 52471 [28] Peng G H, Tang R, Kuang H, Tan H L and Chen T 2021 Chin. Phys. B30 108901 [29] Ge H X 2011 Chin. Phys. B20 090502 [30] Jin Y F and Hu H Y 2013 Commun. Nonlinear Sci. Numer. Simulat.18 1027 [31] Redhu P and Gupta A K 2015 Commun. Nonlinear Sci. Numer. Simulat27 263 [32] Jin Y F and Meng Xu 2016 Physica A459 107 [33] Wang Y N, Cheng R J and Ge H X 2017 Physica A479 478 [34] Peng G H, Yang S H and Zhao H Z 2018 Physica A509 855 [35] Qin S D, Ge H X and Cheng R J 2018 Phys. Lett. A382 482 [36] Kaur R and Sharma S 2018 Physica A510 446 [37] Zhang Y C, Xue Yu, Zhang Peng, Fan D L and He H D 2019 Physica A514 133 [38] Chang Y Y, He Z T and Cheng R J 2019 Physica A514 522 [39] Zhang G, Yin L, Pan D B, Zhang Y, Cui B Y and Jiang S 2019 Physica A541 123704 [40] Jin Y F and Meng J W 2020 Commun. Nonlinear Sci. Numer. Simulat.90 105333 [41] Li S H, Cheng R J and Ge H X 2020 Physica A558 125015 [42] Guan X Y, Cheng R J and Ge H X 2021 Physica A574 125972 [43] Li Z P, Li W Z and Xu S Z 2015 Nonlinear Dyn.80 529 [44] Nagatani T 1998 Phys. Rev. E58 4271 [45] Nagatani T 2000 Phys. Rev. E61 3564 [46] Peng G H, Jia T T, Kuang H and Tan H L 2022 Physica A585 126443 [47] Oguchi T, Katakura M and Taniguchi M 2002 J. Jpn. Soc. Civ. Eng.695 125
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.