Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(3): 038101    DOI: 10.1088/1674-1056/19/3/038101
CROSS DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Analysis of heating effect on the process of high deposition rate microcrystalline silicon

Zhang Xiao-Dan(张晓丹),Zhang He(张鹤),Wei Chang-Chun(魏长春), Sun Jian(孙建), Hou Guo-Fu(侯国付), Xiong Shao-Zhen(熊绍珍),Geng Xin-Hua(耿新华), and Zhao Ying(赵颖)
Institute of Photo-electronics Thin Film Devices and Technique of Nankai University, Key Laboratory of Photo-electronics Thin Film Devices and Technique of Tianjin, Key Laboratory of Photo-electronic Information Science and Technology (Nankai University), Ministry of Education, Tianjin 300071, China
Abstract  A possible heating effect on the process of high deposition rate microcrystalline silicon has been studied. It includes the discharge time-accumulating heating effect, discharge power, inter-electrode distance, and total gas flow rate induced heating effect. It is found that the heating effects mentioned above are in some ways quite similar to and in other ways very different from each other. However, all of them will directly or indirectly cause the increase of the substrate surface temperature during the process of depositing microcrystalline silicon thin films, which will affect the properties of the materials with increasing time. This phenomenon is very serious for the high deposition rate of microcrystalline silicon thin films because of the high input power and the relatively small inter-electrode distance needed. Through analysis of the heating effects occurring in the process of depositing microcrystalline silicon, it is proposed that the discharge power and the heating temperature should be as low as possible, and the total gas flow rate and the inter-electrode distance should be suitable so that device-grade high quality deposition rate microcrystalline silicon thin films can be fabricated.
Keywords:  high pressure and high power      microcrystalline silicon      heating effect  
Received:  21 June 2009      Revised:  30 July 2009      Accepted manuscript online: 
PACS:  81.05.Cy (Elemental semiconductors)  
  68.55.A- (Nucleation and growth)  
  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  
Fund: Project supported by Hi-Tech Research and Development Program of China (Grant Nos.~2007AA05Z436 and 2009AA050602), Science and Technology Support Project of Tianjin (Grant No. 08ZCKFGX03500), National Basic Research Program of China (Grant Nos.~2006CB202602 and 2006CB202603), National Natural Science Foundation of China (Grant No.~60976051), International Cooperation Project between China--Greece Government (Grant Nos.~2006DFA62390 and 2009DFA62580), and Program for New Century Excellent Talents in University of China (Grant No.~NCET-08-0295).

Cite this article: 

Zhang Xiao-Dan(张晓丹),Zhang He(张鹤),Wei Chang-Chun(魏长春), Sun Jian(孙建), Hou Guo-Fu(侯国付), Xiong Shao-Zhen(熊绍珍),Geng Xin-Hua(耿新华), and Zhao Ying(赵颖) Analysis of heating effect on the process of high deposition rate microcrystalline silicon 2010 Chin. Phys. B 19 038101

[1] Suzuki S, Kondo M and Matsuda A 2002 Solar Energy Materialsand Solar Cells 74 489
[2] Graf U, Meier J, Kroll U, Bailat J, Droz C, Vallat-SauvainEvelyne and Shah Arvind 2003 Thin Solid Films 427 37
[3] Strahm B, Howling A A, Sansonnens L, Hollenstein C, Kroll U,Meier J, Ellert C, Feitknecht L and Balif C 2007 Solar EnergyMaterials & Solar Cells 91 495
[4] Zhang X D, Zhao Y, Zhu F, Sun J, Wei C C, Hou G F, Geng XH and Xiong S Z 2004 Chin. Phys. 13 1370
[5] Gao Y T, Zhang X D, Zhao Y, Sun J, Zhu F and Wei C C 2006 ActaPhys. Sin. 55 1497 (in Chinese)
[6] Kondo M, Fukawa M, Guo L and Matsuda A 2000 J. Non-Cryst.Solids 266--269 84
[7] Mai Y, Klein S, Carius R, Wolff J, Lambertz A, Finger F and Geng X2005 J. Appl. Phys. 97 114913
[8] Gordijn A, Vanecek M, Goedheer W J, Rath J K and Schropp R E I2006 Jpn. J. Appl. Phys. 45 6166
[9] Roschek T, Repmann T, Müller J, Rech B and Wagner H 2002 J. Vac. Sci. Technol. A Vac. Surf.Films 20 492
[10] Niikura C, Kondo M and Matsuda A 2004 J. Non-Cryst. Solids 338--340 42
[11] van de Donker M N, Schmitz R, Appenzeller W, Rech B, Kessels WM M and van de Sanden M C M 2006 Thin Solid Films 511--512 562
[12] Matsuda A 1983 J. Non-Cryst. Solids 59--60 767
[13] Nasuno Y, Kondo M and Matsuda A 2001 Appl. Phys. Letts. 78 2330
[14] Zhao Y, Zhang X D, Zhu F, Gao Y T, Wei C C, Xue J M, Ren H Z, Zhang D K, Hou G F, Sun J and Geng X H 2005 15th International Photovoltaic Science & Engineering Conference (PVSEC-15) Shanghai, China, p65
[15] Usui M and Kikuchi M 1979 J. Non-Cryst. Solids 34 1
[16] Ray S, Mukhopadhyay S, Jana T and Carius R 2002 J. Non-Cryst.Solids 299--302 761
[17] Keppner H, Meier J, Torres P, Fisher D and Shah A 1999 Appl.Phys. A 69 169
[1] Effect of Joule heating on the electroosmotic microvortex and dielectrophoretic particle separation controlled by local electric field
Bing Yan(严兵), Bo Chen(陈波), Yongliang Xiong(熊永亮), and Zerui Peng(彭泽瑞). Chin. Phys. B, 2021, 30(11): 114701.
[2] Investigation and active suppression of self-heating induced degradation in amorphous InGaZnO thin film transistors
Dong Zhang(张东), Chenfei Wu(武辰飞), Weizong Xu(徐尉宗), Fangfang Ren(任芳芳), Dong Zhou(周东), Peng Yu(于芃), Rong Zhang(张荣), Youdou Zheng(郑有炓), Hai Lu(陆海). Chin. Phys. B, 2019, 28(1): 017303.
[3] A technique for simultaneously improving the product of cutoff frequency-breakdown voltage and thermal stability of SOI SiGe HBT
Qiang Fu(付强), Wan-Rong Zhang(张万荣), Dong-Yue Jin(金冬月), Yan-Xiao Zhao(赵彦晓), Xiao Wang(王肖). Chin. Phys. B, 2016, 25(12): 124401.
[4] Non-depletion floating layer in SOI LDMOS for enhancing breakdown voltage and eliminating back-gate bias effect
Zheng Zhi (郑直), Li Wei (李威), Li Ping (李平). Chin. Phys. B, 2013, 22(4): 047701.
[5] Influence of ignition condition on the growth of silicon thin films using plasma enhanced chemical vapour deposition
Zhang Hai-Long(张海龙), Liu Feng-Zhen(刘丰珍), Zhu Mei-Fang(朱美芳), and Liu Jin-Long(刘金龙) . Chin. Phys. B, 2012, 21(1): 015203.
[6] Influence of Boron doping on microcrystalline silicon growth
Li Xin-Li(李新利), Chen Yong-Sheng(陈永生), Yang Shi-E(杨仕娥), Gu Jin-Hua(谷锦华), Lu Jing-Xiao(卢景霄), Gao Xiao-Yong(郜小勇), Li Rui(李瑞), Jiao Yue-Chao(焦岳超), Gao Hai-Bo(高海波), and Wang Guo(王果) . Chin. Phys. B, 2011, 20(9): 096801.
[7] Compound buried layer SOI high voltage device with a step buried oxide
Wang Yuan-Gang(王元刚), Luo Xiao-Rong(罗小蓉), Ge Rui(葛锐), Wu Li-Juan(吴丽娟), Chen Xi(陈曦), Yao Guo-Liang(姚国亮), Lei Tian-Fei(雷天飞), Wang Qi(王琦), Fan Jie(范杰), and Hu Xia-Rong(胡夏融) . Chin. Phys. B, 2011, 20(7): 077304.
[8] Evaluation of thermal resistance constitution for packaged AlGaN/GaN high electron mobility transistors by structure function method
Zhang Guang-Chen(张光沉), Feng Shi-Wei(冯士维), Zhou Zhou(周舟), Li Jing-Wan(李静婉),and Guo Chun-Sheng(郭春生) . Chin. Phys. B, 2011, 20(2): 027202.
[9] Micromorph tandem solar cells: optimization of the microcrystalline silicon bottom cell in a single chamber system
Zhang Xiao-Dan(张晓丹), Zheng Xin-Xia(郑新霞), Xu Sheng-Zhi(许盛之), Lin Quan(林泉), Wei Chang-Chun(魏长春), Sun Jian(孙建), Geng Xin-Hua(耿新华), and Zhao Ying(赵颖) . Chin. Phys. B, 2011, 20(10): 108801.
[10] Partial-SOI high voltage P-channel LDMOS with interface accumulation holes
Wu Li-Juan(吴丽娟), Hu Sheng-Dong(胡盛东), Luo Xiao-Rong(罗小蓉), Zhang Bo(张波), and Li Zhao-Ji(李肇基). Chin. Phys. B, 2011, 20(10): 107101.
[11] Reduction of the phosphorus contamination for plasma deposition of p–i–n microcrystalline silicon solar cells in a single chamber
Wang Guang-Hong(王光红), Zhang Xiao-Dan(张晓丹), Xu Sheng-Zhi(许盛之), Zheng Xin-Xia(郑新霞), Wei Chang-Chun(魏长春), Sun Jian(孙建), Xiong Shao-Zhen(熊绍珍), Geng Xin-Hua(耿新华), and Zhao Ying(赵颖). Chin. Phys. B, 2010, 19(9): 098102.
[12] The study of amorphous incubation layers during the growth of microcrystalline silicon films under different deposition conditions
Chen Yong-Sheng(陈永生), Xu Yan-Hua(徐艳华), Gu Jin-Hua(谷锦华), Lu Jing-Xiao(卢景霄), Yang Shi-E(杨仕娥), and Gao Xiao-Yong(郜小勇). Chin. Phys. B, 2010, 19(8): 087206.
[13] The effect of initial discharge conditions on the properties of microcrystalline silicon thin films and solar cells
Chen Yong-Sheng(陈永生), Yang Shi-E(杨仕娥), Wang Jian-Hua(汪建华), Lu Jing-Xiao(卢景霄),Gao Xiao-Yong(郜小勇), and Gu Jin-Hua(谷锦华). Chin. Phys. B, 2010, 19(5): 057205.
[14] A new structure and its analytical model for the vertical interface electric field of a partial-SOI high voltage device
Hu Sheng-Dong(胡盛东), Zhang Bo(张波), Li Zhao-Ji(李肇基), and Luo Xiao-Rong(罗小蓉). Chin. Phys. B, 2010, 19(3): 037303.
[15] Electrical characteristics of SiGe-on-insulator nMOSFET and SiGe-silicon-on-aluminum nitride nMOSFET
Liu Hong-Xia(刘红侠), Li Bin(李斌), Li Jin(李劲), Yuan Bo(袁博), and Hao Yue(郝跃). Chin. Phys. B, 2010, 19(12): 127303.
No Suggested Reading articles found!