Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(5): 057205    DOI: 10.1088/1674-1056/19/5/057205
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

The effect of initial discharge conditions on the properties of microcrystalline silicon thin films and solar cells

Chen Yong-Sheng(陈永生)a)b), Yang Shi-E(杨仕娥)a), Wang Jian-Hua(汪建华)b)c), Lu Jing-Xiao(卢景霄)a),Gao Xiao-Yong(郜小勇)a), and Gu Jin-Hua(谷锦华) a)
a Key Laboratory of Material Physics, Department of Physics, Zhengzhou University, Zhengzhou 450052, China; b Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China; c Department of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430073, China
Abstract  This paper studies the effects of silane back diffusion in the initial plasma ignition stage on the properties of microcrystalline silicon ($\mu $c-Si:H) films by Raman spectroscopy and spectroscopic ellipsometry, through delaying the injection of SiH$_{4}$ gas to the reactor before plasma ignition. By comparing with standard discharge condition, delayed SiH$_{4}$ gas condition could prevent the back diffusion of SiH$_{4}$ from the reactor to the deposition region effectively, which induced the formation of a thick amorphous incubation layer in the interface between bulk film and glass substrate. Applying this method, it obtains the improvement of spectral response in the middle and long wavelength region by combining this method with solar cell fabrication. Finally, results are explained by modifying zero-order analytical model, and a good agreement is found between model and experiments concerning the optimum delayed injection time.
Keywords:  back diffusion      microcrystalline silicon      thin film      Raman crystallinity  
Received:  13 December 2008      Revised:  03 November 2009      Accepted manuscript online: 
PACS:  78.30.Am (Elemental semiconductors and insulators)  
  84.60.Jt (Photoelectric conversion)  
  52.77.Dq (Plasma-based ion implantation and deposition)  
  66.30.H- (Self-diffusion and ionic conduction in nonmetals)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  68.55.-a (Thin film structure and morphology)  
Fund: Project supported by the State Key Development Program for Basic Research of China (Grant No.~2006CB202601).

Cite this article: 

Chen Yong-Sheng(陈永生), Yang Shi-E(杨仕娥), Wang Jian-Hua(汪建华), Lu Jing-Xiao(卢景霄),Gao Xiao-Yong(郜小勇), and Gu Jin-Hua(谷锦华) The effect of initial discharge conditions on the properties of microcrystalline silicon thin films and solar cells 2010 Chin. Phys. B 19 057205

[1] van den Donker M N, Rech B, Finger F, Kessels W M M and van de Sanden M C M 2005 Appl. Phys. Lett. 87 263503
[2] Losurdo M, Giangregorio M, Sacchetti A, Capezzuto P, Bruno G and Giorgis F 2006 Appl. Surf. Sci. 253 287
[3] Sorokin M, Kroesen G M W and Stoffels W W 2004 IEEE Trans. Plasma Sci. 32 731
[4] Roschek T, Rech B, M\"{Uller J, Schmitz R and Wagner H 2004 Thin Solid Films 451--452 466
[5] Guo L, Kondo M, Fukawa M, Saitoh K and Matsuda A 1998 Jpn. J. Appl. Phys. Part 2 37 L1116
[6] Rech B, Roschek T, Repmann T, M\"{Uller J, Schmitz R and Appenzeller W 2003 Thin Solid Films 427 157
[7] Amanitides E, Hammad A, Katsia E and Mataras D 2005 J. Appl. Phys. 97 073303
[8] van den Donker M N, Rech B, Kessels W M M and van de Sanden M C M 2007 New Journal of Physics 9 280
[9] Chen Y S, Gao X Y, Yang S E, Lu J X and Gu J H 2007 Acta Phys. Sin. 56 4122 (in Chinese)
[10] Custer J S, Thompson M O, Jacobson D C, Poate J M, Roorda S, Sinke W C and Spaepen F 1993 Appl. Phys. Lett. 64 437
[11] Chen Y S, Wang J H, Lu J X, Zheng W, Gu J H, Yang S E, Gao X Y, Guo X J, Zhao S L and Gao Z 2008 Chin. Phys. B 17 3464
[1] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[2] Migration of weakly bonded oxygen atoms in a-IGZO thin films and the positive shift of threshold voltage in TFTs
Chen Wang(王琛), Wenmo Lu(路文墨), Fengnan Li(李奉南), Qiaomei Luo(罗巧梅), and Fei Ma(马飞). Chin. Phys. B, 2022, 31(9): 096101.
[3] Structure, phase evolution and properties of Ta films deposited using hybrid high-power pulsed and DC magnetron co-sputtering
Min Huang(黄敏), Yan-Song Liu(刘艳松), Zhi-Bing He(何智兵), and Yong Yi(易勇). Chin. Phys. B, 2022, 31(6): 066101.
[4] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[5] An n—n type heterojunction enabling highly efficientcarrier separation in inorganic solar cells
Gang Li(李刚), Yuqian Huang(黄玉茜), Rongfeng Tang(唐荣风), Bo Che(车波), Peng Xiao(肖鹏), Weitao Lian(连伟涛), Changfei Zhu(朱长飞), and Tao Chen(陈涛). Chin. Phys. B, 2022, 31(3): 038803.
[6] Anomalous strain effect in heteroepitaxial SrRuO3 films on (111) SrTiO3 substrates
Zhenzhen Wang(王珍珍), Weiheng Qi(戚炜恒), Jiachang Bi(毕佳畅), Xinyan Li(李欣岩), Yu Chen(陈雨), Fang Yang(杨芳), Yanwei Cao(曹彦伟), Lin Gu(谷林), Qinghua Zhang(张庆华), Huanhua Wang(王焕华), Jiandi Zhang(张坚地), Jiandong Guo(郭建东), and Xiaoran Liu(刘笑然). Chin. Phys. B, 2022, 31(12): 126801.
[7] Probing thermal properties of vanadium dioxide thin films by time-domain thermoreflectance without metal film
Qing-Jian Lu(陆青鑑), Min Gao(高敏), Chang Lu(路畅), Fei Long(龙飞), Tai-Song Pan(潘泰松), and Yuan Lin(林媛). Chin. Phys. B, 2021, 30(9): 096801.
[8] Effect of Mo doping on phase change performance of Sb2Te3
Wan-Liang Liu(刘万良), Ying Chen(陈莹), Tao Li(李涛), Zhi-Tang Song(宋志棠), and Liang-Cai Wu(吴良才). Chin. Phys. B, 2021, 30(8): 086801.
[9] Accurate capacitance-voltage characterization of organic thin films with current injection
Ming Chu(褚明), Shao-Bo Liu(刘少博), An-Ran Yu(蔚安然), Hao-Miao Yu(于浩淼), Jia-Jun Qin(秦佳俊), Rui-Chen Yi(衣睿宸), Yuan Pei(裴远), Chun-Qin Zhu(朱春琴), Guang-Rui Zhu(朱光瑞), Qi Zeng(曾琪), and Xiao-Yuan Hou(侯晓远). Chin. Phys. B, 2021, 30(8): 087301.
[10] Zero-field skyrmions in FeGe thin films stabilized through attaching a perpendicularly magnetized single-domain Ni layer
Zi-Bo Zhang(张子博) and Yong Hu(胡勇). Chin. Phys. B, 2021, 30(7): 077503.
[11] Gas sensor using gold doped copper oxide nanostructured thin films as modified cladding fiber
Hussein T. Salloom, Rushdi I. Jasim, Nadir Fadhil Habubi, Sami Salman Chiad, M Jadan, and Jihad S. Addasi. Chin. Phys. B, 2021, 30(6): 068505.
[12] Effect of hydrogen plasma implantation on the micro-structure and magnetic properties of hcp-Co8057Fe4Ir16 thin films
Hui Wang(王辉), Meng Wu(吴猛), Haiping Zhou(周海平), Bo Zhang(张博), Shixin Hu(胡世欣), Tianyong Ma(马天勇), Zhiwei Li(李志伟), Liang Qiao(乔亮), Tao Wang(王涛), and Fashen Li(李发伸). Chin. Phys. B, 2021, 30(5): 057505.
[13] Water and nutrient recovery from urine: A lead up trail using nano-structured In2S3 photo electrodes
R Jayakrishnan, T R Sreerev, and Adith Varma. Chin. Phys. B, 2021, 30(5): 056103.
[14] Multi-layer structures including zigzag sculptured thin films for corrosion protection of AISI 304 stainless steel
Fateme Abdi. Chin. Phys. B, 2021, 30(3): 038106.
[15] Molecular beam epitaxy growth of iodide thin films
Xinqiang Cai(蔡新强), Zhilin Xu(徐智临), Shuai-Hua Ji(季帅华), Na Li(李娜), and Xi Chen(陈曦). Chin. Phys. B, 2021, 30(2): 028102.
No Suggested Reading articles found!