Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(2): 027202    DOI: 10.1088/1674-1056/20/2/027202
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Evaluation of thermal resistance constitution for packaged AlGaN/GaN high electron mobility transistors by structure function method

Zhang Guang-Chen(张光沉), Feng Shi-Wei(冯士维), Zhou Zhou(周舟), Li Jing-Wan(李静婉),and Guo Chun-Sheng(郭春生)
School of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China
Abstract  The evaluation of thermal resistance constitution for packaged AlGaN/GaN high electron mobility transistor (HEMT) by structure function method is proposed in this paper. The evaluation is based on the transient heating measurement of the AlGaN/GaN HEMT by pulsed electrical temperature sensitive parameter method. The extracted chip-level and package-level thermal resistances of the packaged multi-finger AlGaN/GaN HEMT with 400-μ m SiC substrate are 22.5 K/W and 7.2 K/W respectively, which provides a non-invasive method to evaluate the chip-level thermal resistance of packaged AlGaN/GaN HEMTs. It is also experimentally proved that the extraction of the chip-level thermal resistance by this proposed method is not influenced by package form of the tested device and temperature boundary condition of measurement stage.
Keywords:  high electron mobility transistor      self-heating effect      structure function      reliability  
Received:  06 September 2010      Revised:  20 September 2010      Accepted manuscript online: 
PACS:  72.80.Ey (III-V and II-VI semiconductors)  
  73.40.Ns (Metal-nonmetal contacts)  
Fund: Project supported by the Natural Science Foundation of Beijing, China (Grant No. 4092005), the National High Technology Research and Development Program of China (Grant No. 2009AA032704), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20091103110006).

Cite this article: 

Zhang Guang-Chen(张光沉), Feng Shi-Wei(冯士维), Zhou Zhou(周舟), Li Jing-Wan(李静婉),and Guo Chun-Sheng(郭春生) Evaluation of thermal resistance constitution for packaged AlGaN/GaN high electron mobility transistors by structure function method 2011 Chin. Phys. B 20 027202

[1] Fan L, Hao Y, Zhao Y F, Zhang J C, Gao Z Y and Li P X 2009 Chin. Phys. B 18 2912
[2] Gu W P, Duan H T, Ni J Y, Hao Y, Zhang J C, Feng Q and Ma X H 2009 Chin. Phys. B 18 1601
[3] Ren F, Hao Z B, Wang L, Wang L, Li H T and Luo Y 2010 Chin. Phys. B bf 19 017306
[4] Wu Y F, Moore M, Saxler A, Wisleder T and Parikh P 2006 Device Research Conference 64 151
[5] Ducatteau D, Minko A, Ho"el V, Morvan E, Delos E, Grimbert B, Lahreche H, Bove P, Gaqui`ere C, De Jaeger J C and Delage S 2006 IEEE Electron Device Lett. 27 7
[6] Chattopadhyay M K and Tokekar S 2008 Microelectron. J. 39 1181
[7] Alamo J A and Joh J 2009 Microelectron Reliab. 49 1200
[8] Darwish A M, Bayba A J and Hung H A 2008 IEEE Trans. Microwave Theory Tech. 56 3188
[9] Kuball M, Hayes J M, Uren M J, Martin T, Birbeck J C H, Balmer R S and Hughes B T 2002 IEEE Electron Device Lett. 25 7
[10] Menozzi R, Umana-Membreno G A, Nener B D, Parish G, Sozzi G, Faraone L and Mishra U K 2008 IEEE Trans. Device Mater. Res. 8 255
[11] Szekely V 1997 Microelectron. J. 28 277
[12] Rencz M 2005 IEEE SEMI-THERM Symposium 21 307
[13] Poppe A, Zhang Y, Wilson J, Farkas G, Szab'o P, Parry J, Rencz M and Sz'ekely V 2009 IEEE Trans. Compon. Pack. T. 32 484
[14] Hu J Z, Yang L Q, Hwang W J and Shin M W 2006 J. Crystal Growth 288 157
[15] Kim L, Choi J H, Jang S H and Shin M W 2007 Thermochim. Acta 455 21
[16] Yang L Q, Hu J Z, Kim L and Shin M W 2008 IEEE Trans. Device Mater. Res. 8 571
[17] Szekely V 2002 Microelectron Reliab. 42 629
[18] Kennett T J, Prestwich W V and Robertson A 1978 Nuclear Instruments and Methods 151 285
[19] Weinberg L 1962 Network Analysis and Synthesis (New York: McGraw-Hill) p. 366
[1] Integrated, reliable laser system for an 87Rb cold atom fountain clock
Zhen Zhang(张镇), Jing-Feng Xiang(项静峰), Bin Xu(徐斌), Pan Feng(冯盼), Guang-Wei Sun(孙广伟),Yi-Ming Meng(孟一鸣), Si-Min-Da Deng(邓思敏达), Wei Ren(任伟),Jin-Yin Wan(万金银), and De-Sheng Lü(吕德胜). Chin. Phys. B, 2023, 32(1): 013202.
[2] High throughput N-modular redundancy for error correction design of memristive stateful logic
Xi Zhu(朱熙), Hui Xu(徐晖), Weiping Yang(杨为平), Zhiwei Li(李智炜), Haijun Liu(刘海军), Sen Liu(刘森), Yinan Wang(王义楠), and Hongchang Long(龙泓昌). Chin. Phys. B, 2023, 32(1): 018502.
[3] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[4] Impact of STI indium implantation on reliability of gate oxide
Xiao-Liang Chen(陈晓亮), Tian Chen(陈天), Wei-Feng Sun(孙伟锋), Zhong-Jian Qian(钱忠健), Yu-Dai Li(李玉岱), and Xing-Cheng Jin(金兴成). Chin. Phys. B, 2022, 31(2): 028505.
[5] Heterogeneous integration of InP HEMTs on quartz wafer using BCB bonding technology
Yan-Fu Wang(王彦富), Bo Wang(王博), Rui-Ze Feng(封瑞泽), Zhi-Hang Tong(童志航), Tong Liu(刘桐), Peng Ding(丁芃), Yong-Bo Su(苏永波), Jing-Tao Zhou(周静涛), Feng Yang(杨枫), Wu-Chang Ding(丁武昌), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018502.
[6] Removal of GaN film over AlGaN with inductively coupled BCl3/Ar atomic layer etch
Jia-Le Tang(唐家乐) and Chao Liu(刘超). Chin. Phys. B, 2022, 31(1): 018101.
[7] C band microwave damage characteristics of pseudomorphic high electron mobility transistor
Qi-Wei Li(李奇威), Jing Sun(孙静), Fu-Xing Li(李福星), Chang-Chun Chai(柴常春), Jun Ding(丁君), and Jin-Yong Fang(方进勇). Chin. Phys. B, 2021, 30(9): 098502.
[8] Resistive switching memory for high density storage and computing
Xiao-Xin Xu(许晓欣), Qing Luo(罗庆), Tian-Cheng Gong(龚天成), Hang-Bing Lv(吕杭炳), Qi Liu(刘琦), and Ming Liu(刘明). Chin. Phys. B, 2021, 30(5): 058702.
[9] Degradation of β-Ga2O3 Schottky barrier diode under swift heavy ion irradiation
Wen-Si Ai(艾文思), Jie Liu(刘杰), Qian Feng(冯倩), Peng-Fei Zhai(翟鹏飞), Pei-Pei Hu(胡培培), Jian Zeng(曾健), Sheng-Xia Zhang(张胜霞), Zong-Zhen Li(李宗臻), Li Liu(刘丽), Xiao-Yu Yan(闫晓宇), and You-Mei Sun(孙友梅). Chin. Phys. B, 2021, 30(5): 056110.
[10] Effects of notch structures on DC and RF performances of AlGaN/GaN high electron mobility transistors
Hao Zou(邹浩), Lin-An Yang(杨林安), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(4): 040502.
[11] High performance InAlN/GaN high electron mobility transistors for low voltage applications
Minhan Mi(宓珉瀚), Meng Zhang(张濛), Sheng Wu(武盛), Ling Yang(杨凌), Bin Hou(侯斌), Yuwei Zhou(周雨威), Lixin Guo(郭立新), Xiaohua Ma(马晓华), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(5): 057307.
[12] Characteristics of AlGaN/GaN high electron mobility transistors on metallic substrate
Minglong Zhao(赵明龙), Xiansheng Tang(唐先胜), Wenxue Huo(霍雯雪), Lili Han(韩丽丽), Zhen Deng(邓震), Yang Jiang(江洋), Wenxin Wang(王文新), Hong Chen(陈弘), Chunhua Du(杜春花), Haiqiang Jia(贾海强). Chin. Phys. B, 2020, 29(4): 048104.
[13] Effect of AlGaN interlayer on luminous efficiency and reliability of GaN-based green LEDs on silicon substrate
Jiao-Xin Guo(郭娇欣), Jie Ding(丁杰), Chun-Lan Mo(莫春兰), Chang-Da Zheng(郑畅达), Shuan Pan(潘拴), Feng-Yi Jiang(江风益). Chin. Phys. B, 2020, 29(4): 047303.
[14] Investigation of gate oxide traps effect on NAND flash memory by TCAD simulation
He-Kun Zhang(章合坤), Xuan Tian(田璇), Jun-Peng He(何俊鹏), Zhe Song(宋哲), Qian-Qian Yu(蔚倩倩), Liang Li(李靓), Ming Li(李明), Lian-Cheng Zhao(赵连城), Li-Ming Gao(高立明). Chin. Phys. B, 2020, 29(3): 038501.
[15] Reliability of organic light-emitting diodes in low-temperature environment
Saihu Pan(潘赛虎), Zhiqiang Zhu(朱志强), Kangping Liu(刘康平), Hang Yu(于航), Yingjie Liao(廖英杰), Bin Wei(魏斌), Redouane Borsali, and Kunping Guo(郭坤平). Chin. Phys. B, 2020, 29(12): 128503.
No Suggested Reading articles found!