CLASSICAL AREAS OF PHENOMENOLOGY |
Prev
Next
|
|
|
Study of narrow-band second harmonic generation from a broad-band fundamental pulse |
Wen Jing(温静), Jiang Hong-Bing(蒋红兵)†, Deng Yong-Kai(邓勇开), and Gong Qi-Huang(龚旗煌) |
Department of Physics & State Key Laboratory for Mesoscopic Physics, Peking University, Beijing 100871, China |
|
|
Abstract This paper studies the type-I phase-matched second harmonic generation using 25-fs input laser pulses in a thick BBO crystal. The harmonic signal exhibits a narrow spectrum bandwidth, even though the input pulse has a broad bandwidth. The energy transfer efficiency and modulation of the fundamental spectrum are investigated.
|
Received: 15 April 2010
Revised: 25 May 2010
Accepted manuscript online:
|
PACS:
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
42.70.Mp
|
(Nonlinear optical crystals)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2006CB806007), and the National Natural Science Foundation of China (Grant Nos. 10574006, 10634020 and 10821062). |
Cite this article:
Wen Jing(温静), Jiang Hong-Bing(蒋红兵), Deng Yong-Kai(邓勇开), and Gong Qi-Huang(龚旗煌) Study of narrow-band second harmonic generation from a broad-band fundamental pulse 2010 Chin. Phys. B 19 124213
|
[1] |
Fejer M M, Magel G A, Jundt D H and Byer R L 1992 IEEE J. Quantum Electron. 28 2631
|
[2] |
Coutts D W 1995 IEEE J. Quantum Electron. 31 2208
|
[3] |
Steinbach A, Rauner M, Cruz F C and Bergquist J C 1996 Opt. Commun. 123 207
|
[4] |
Shwa D, Eisenmann S, Marcus G and Zigler A 2009 Opt. Express 17 6451
|
[5] |
Zhang H Z, Yang J B and Gao J Y 2003 Chin. Phys. 12 518
|
[6] |
Huang G X 2001 Chin. Phys. 10 418
|
[7] |
Desalvo R, Hagan D J, Sheikbahae M, Stegeman G, Vanstryland E W and Vanherzeele H 1992 Opt. Lett. 17 28
|
[8] |
Xu G, Zhu H Y, Wang T and Qian L J 2002 Opt. Commun. 207 347
|
[9] |
Su W H, Qian L J, Luo H, Fu X Q, Zhu H Y, Wang T, Backwitt K, Chen Y F and Wise F 2006 J. Opt. Soc. Am. B 23 51
|
[10] |
Dubietis A, Valiulis G, Danielius R and Piskarskas A 1996 Opt. Lett. 21 1262
|
[11] |
Dubietis A, Valiulis G, Danielius R and Piskarskas A 1998 Pure Appl. Opt. 7 271
|
[12] |
Zeng X L, Ashihara S, Chen X F, Shimura T and Kuroda K 2008 Opt. Commun. 281 4499
|
[13] |
Ashihara S, Shimura T, Kuroda K, Yu N E, Kurimura S, Kitamura K, Cha M and Taira 2004 Appl. Phys. Lett. 84 1055
|
[14] |
Liu X, Qian L J and Frank Wise 1999 Opt. Lett. 24 1777
|
[15] |
Xu G, Qian L J, Wang T, Zhu H Y, Zhu C S and Fan D Y 2004 IEEE J. Sel. Top. Quantum Electron. 10 174
|
[16] |
Di Trapani P, Caironi D, Valiulis G, Dubietis A, Danielius R and Piskarskas A 1998 Phys. Rev. Lett. 81 570
|
[17] |
Chien C Y, Korn G, Coe J S, Squier J and Mourou G 1995 Opt. Lett. 20 353
|
[18] |
Krylov V, Rebane A, Kalintsev A G, Schwoerer H and Wild U P 1995 Opt. Lett. 20 198
|
[19] |
Jundt D H, Fejer M M and Byer R L 1990 IEEE J. Quantum Electron. 26 135
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|