Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 060204    DOI: 10.1088/1674-1056/abeee8
GENERAL Prev   Next  

Effect of symmetrical frequency chirp on pair production

Kun Wang(王焜)1, Xuehua Hu(胡学华)1, Sayipjamal Dulat1,†, and Bai-Song Xie(谢柏松)2,3,‡
1 School of Physics and Technology, Xinjiang University, Urumqi 830046, China;
2 Key Laboratory of Beam Technology of the Ministry of Education, and College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China;
3 Beijing Radiation Center, Beijing 100875, China
Abstract  By using Dirac-Heisenberg-Wigner formalism we study electron-positron pair production for linear, elliptic, nearly circular, and circular polarizations of electric fields with symmetrical frequency chirp, and we obtain momentum spectra and pair yield. The difference of results among polarized fields is obvious for the small chirp. When the chirp parameter increases, the momentum spectra tend to exhibit the multiphoton pair generation that is characterized by the multi-concentric ring structure. The increase of the number density is also remarkable compared to the case of asymmetrical frequency chirp. Note that the dynamically assisted Schwinger mechanism plays an important role for the enhanced pair production in the symmetrical frequency chirp.
Keywords:  pair production      Dirac-Heisenberg-Wigner formalism      symmetrical frequency chirp  
Received:  31 December 2020      Revised:  23 February 2021      Accepted manuscript online:  16 March 2021
PACS:  02.60.-x (Numerical approximation and analysis)  
  12.20.Ds (Specific calculations)  
  03.65.Pm (Relativistic wave equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11875007, 11935008, and 11965020).
Corresponding Authors:  Sayipjamal Dulat, Bai-Song Xie     E-mail:  sdulat@msu.edu;bsxie@bnu.edu.cn

Cite this article: 

Kun Wang(王焜), Xuehua Hu(胡学华), Sayipjamal Dulat, and Bai-Song Xie(谢柏松) Effect of symmetrical frequency chirp on pair production 2021 Chin. Phys. B 30 060204

[1] Sauter F 1931 Z. Phys. 69 742
[2] Heisenberg W and Euler H 1936 Z. Phys. 98 714
[3] Schwinger J S 1951 Phys. Rev. 82 664
[4] Di Piazza A, Muller C, Hatsagortsyan K Z and Keitel C H 2012 Rev. Mod. Phys. 84 1177
[5] Xie B S, Li Z L and Tang S 2017 Matter Radiat. Extremes 2 225
[6] Gelis F and Tanji N 2016 Prog. Part. Nucl. Phys. 87 1
[7] Mocken G R, Ruf M, Muller C and Keitel C H 2010 Phys. Rev. A 81 022122
[8] Akal I, Villalba-Chavez S and Muller C 2014 Phys. Rev. D 90 113004
[9] Li Z L, Lu D, Xie B S, Fu L B, Liu J and Shen B F 2014 Phys. Rev. D 89 093011
[10] Schutzhold R, Gies H and Dunne G 2008 Phys. Rev. Lett. 101 130404
[11] Nuriman A, Xie B S, Li Z L and Sayipjamal D 2012 Phys. Lett. B 717 465
[12] Dumlu C K 2010 Phys. Rev. D 82 045007
[13] Jiang M, Xie B S, Sang H B and Li Z L 2013 Chin. Phys. B 22 100307
[14] Abdukerim N, Li Z L and Xie B S 2017 Chin. Phys. B 26 020301
[15] Olugh O, Li Z L, Xie B S and Alkofer R 2019 Phys. Rev. D 99 036003
[16] Strickland D and Mourou G 1985 Opt. Commun. 56 219
[17] Bialynicki-Birula I, Gornicki P and Rafelski J 1991 Phys. Rev. D 44 1825
[18] Hebenstreit F, Alkofer R and Gies H 2010 Phys. Rev. D 82 105026
[19] Hebenstreit F 2011 Schwinger effect in inhomogeneous electric fields (Ph. D. Dissertation) arXiv:1106.5965
[20] Hebenstreit F, Alkofer R and Gies H 2011 Phys. Rev. Lett. 107 180403
[21] Blinne A and Gies H 2014 Phys. Rev. D 89 085001
[22] Blinne A and Strobel E 2016 Phys. Rev. D 93 025014
[23] Kohlfurst C 2015 Electron-positron pair production in inhomogeneous electromagnetic fields (Ph. D. Dissertation) arXiv:1512.06082
[24] Zhuang P and Heinz U W 1998 Phys. Rev. D 57 6525
[25] Ochs S and Heinz U 1998 Ann. Phys. 266 351
[26] Kohlfurst C 2015 Electron-positron pair production in inhomogeneous electromagnetic fields (Ph. D. Dissertation) arXiv:1512.06082
[27] Kohlfurst C and Alkofer R 2016 Phys. Lett. B 756 371
[28] Berenyi D and Levai P 2018 Phys. Lett. B 782 162
[29] Abdukerim N, Li Z L and Xie B S 2013 Phys. Lett. B 726 820
[30] Pfeiffer A, Cirelli C, Smolarski M, et al. 2012 Nat. Phys. 8 76
[31] Keldysh L V 1965 Sov. Phys. JETP 20 1307
[32] He L Y, Xie B S, Guo X H and Wang H Y 2012 Commun. Theor. Phys. 58 863
[33] Li Z L, Li Y J and Xie B S 2017 Phys. Rev. D 96 076010
[34] Gong C, Li Z L, Xie B S and Li Y J 2020 Phys. Rev. D 101 016008
[35] Li Z L, Lu D and Xie B S 2015 Phys. Rev. D 92 085001
[36] Kohlfurst C, Gies H and Alkofer R 2014 Phys. Rev. Lett. 112 050402
[38] Vasak D, Gyulassy M and Elze H T 1987 Annals Phys. 173 462
[39] Pfeiffer A N, Cirelli C, Landsman A S, Smolarski M, Dimitrovski D, Madsen L B and Keller U 2012 Phys. Rev. Lett. 109 083002
[1] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[2] Adaptive multi-step piecewise interpolation reproducing kernel method for solving the nonlinear time-fractional partial differential equation arising from financial economics
Ming-Jing Du(杜明婧), Bao-Jun Sun(孙宝军), and Ge Kai(凯歌). Chin. Phys. B, 2023, 32(3): 030202.
[3] Influence of magnetic field on power deposition in high magnetic field helicon experiment
Yan Zhou(周岩), Peiyu Ji(季佩宇), Maoyang Li(李茂洋), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(2): 025205.
[4] Gauss quadrature based finite temperature Lanczos method
Jian Li(李健) and Hai-Qing Lin(林海青). Chin. Phys. B, 2022, 31(5): 050203.
[5] Superconductivity in octagraphene
Jun Li(李军) and Dao-Xin Yao(姚道新). Chin. Phys. B, 2022, 31(1): 017403.
[6] A local refinement purely meshless scheme for time fractional nonlinear Schrödinger equation in irregular geometry region
Tao Jiang(蒋涛), Rong-Rong Jiang(蒋戎戎), Jin-Jing Huang(黄金晶), Jiu Ding(丁玖), and Jin-Lian Ren(任金莲). Chin. Phys. B, 2021, 30(2): 020202.
[7] Compact finite difference schemes for the backward fractional Feynman-Kac equation with fractional substantial derivative
Jiahui Hu(胡嘉卉), Jungang Wang(王俊刚), Yufeng Nie(聂玉峰), Yanwei Luo(罗艳伟). Chin. Phys. B, 2019, 28(10): 100201.
[8] Effects of imperfect pulses on dynamical decoupling using quantum trajectory method
Lin-Ze He(何林泽), Man-Chao Zhang(张满超), Chun-Wang Wu(吴春旺), Yi Xie(谢艺), Wei Wu(吴伟), Ping-Xing Chen(陈平形). Chin. Phys. B, 2018, 27(12): 120303.
[9] Heteroclinic cycles in a new class of four-dimensional discontinuous piecewise affine systems
Wenjing Xu(徐文静), Wei Xu(徐伟), Li Cai(蔡力). Chin. Phys. B, 2018, 27(11): 110201.
[10] Improved reproducing kernel particle method for piezoelectric materials
Ji-Chao Ma(马吉超), Gao-Feng Wei(魏高峰), Dan-Dan Liu(刘丹丹). Chin. Phys. B, 2018, 27(1): 010201.
[11] Effects of rainy weather on traffic accidents of a freeway using cellular automata model
Ming-Bao Pang(庞明宝), Bo-Ning Ren(任泊宁). Chin. Phys. B, 2017, 26(10): 108901.
[12] Topology optimization using the improved element-free Galerkin method for elasticity
Yi Wu(吴意), Yong-Qi Ma(马永其), Wei Feng(冯伟), Yu-Min Cheng(程玉民). Chin. Phys. B, 2017, 26(8): 080203.
[13] Conformal structure-preserving method for damped nonlinear Schrödinger equation
Hao Fu(傅浩), Wei-En Zhou(周炜恩), Xu Qian(钱旭), Song-He Song(宋松和), Li-Ying Zhang(张利英). Chin. Phys. B, 2016, 25(11): 110201.
[14] Statistical second-order two-scale analysis and computation for heat conduction problem with radiation boundary condition in porous materials
Zhi-Qiang Yang(杨志强), Shi-Wei Liu(刘世伟), Yi Sun(孙毅). Chin. Phys. B, 2016, 25(9): 090202.
[15] Finite-difference time-domain modeling of curved material interfaces by using boundary condition equations method
Jia Lu(卢佳), Huaichun Zhou(周怀春). Chin. Phys. B, 2016, 25(9): 090203.
No Suggested Reading articles found!