|
|
Effect of symmetrical frequency chirp on pair production |
Kun Wang(王焜)1, Xuehua Hu(胡学华)1, Sayipjamal Dulat1,†, and Bai-Song Xie(谢柏松)2,3,‡ |
1 School of Physics and Technology, Xinjiang University, Urumqi 830046, China; 2 Key Laboratory of Beam Technology of the Ministry of Education, and College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China; 3 Beijing Radiation Center, Beijing 100875, China |
|
|
Abstract By using Dirac-Heisenberg-Wigner formalism we study electron-positron pair production for linear, elliptic, nearly circular, and circular polarizations of electric fields with symmetrical frequency chirp, and we obtain momentum spectra and pair yield. The difference of results among polarized fields is obvious for the small chirp. When the chirp parameter increases, the momentum spectra tend to exhibit the multiphoton pair generation that is characterized by the multi-concentric ring structure. The increase of the number density is also remarkable compared to the case of asymmetrical frequency chirp. Note that the dynamically assisted Schwinger mechanism plays an important role for the enhanced pair production in the symmetrical frequency chirp.
|
Received: 31 December 2020
Revised: 23 February 2021
Accepted manuscript online: 16 March 2021
|
PACS:
|
02.60.-x
|
(Numerical approximation and analysis)
|
|
12.20.Ds
|
(Specific calculations)
|
|
03.65.Pm
|
(Relativistic wave equations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11875007, 11935008, and 11965020). |
Corresponding Authors:
Sayipjamal Dulat, Bai-Song Xie
E-mail: sdulat@msu.edu;bsxie@bnu.edu.cn
|
Cite this article:
Kun Wang(王焜), Xuehua Hu(胡学华), Sayipjamal Dulat, and Bai-Song Xie(谢柏松) Effect of symmetrical frequency chirp on pair production 2021 Chin. Phys. B 30 060204
|
[1] Sauter F 1931 Z. Phys. 69 742 [2] Heisenberg W and Euler H 1936 Z. Phys. 98 714 [3] Schwinger J S 1951 Phys. Rev. 82 664 [4] Di Piazza A, Muller C, Hatsagortsyan K Z and Keitel C H 2012 Rev. Mod. Phys. 84 1177 [5] Xie B S, Li Z L and Tang S 2017 Matter Radiat. Extremes 2 225 [6] Gelis F and Tanji N 2016 Prog. Part. Nucl. Phys. 87 1 [7] Mocken G R, Ruf M, Muller C and Keitel C H 2010 Phys. Rev. A 81 022122 [8] Akal I, Villalba-Chavez S and Muller C 2014 Phys. Rev. D 90 113004 [9] Li Z L, Lu D, Xie B S, Fu L B, Liu J and Shen B F 2014 Phys. Rev. D 89 093011 [10] Schutzhold R, Gies H and Dunne G 2008 Phys. Rev. Lett. 101 130404 [11] Nuriman A, Xie B S, Li Z L and Sayipjamal D 2012 Phys. Lett. B 717 465 [12] Dumlu C K 2010 Phys. Rev. D 82 045007 [13] Jiang M, Xie B S, Sang H B and Li Z L 2013 Chin. Phys. B 22 100307 [14] Abdukerim N, Li Z L and Xie B S 2017 Chin. Phys. B 26 020301 [15] Olugh O, Li Z L, Xie B S and Alkofer R 2019 Phys. Rev. D 99 036003 [16] Strickland D and Mourou G 1985 Opt. Commun. 56 219 [17] Bialynicki-Birula I, Gornicki P and Rafelski J 1991 Phys. Rev. D 44 1825 [18] Hebenstreit F, Alkofer R and Gies H 2010 Phys. Rev. D 82 105026 [19] Hebenstreit F 2011 Schwinger effect in inhomogeneous electric fields (Ph. D. Dissertation) arXiv:1106.5965 [20] Hebenstreit F, Alkofer R and Gies H 2011 Phys. Rev. Lett. 107 180403 [21] Blinne A and Gies H 2014 Phys. Rev. D 89 085001 [22] Blinne A and Strobel E 2016 Phys. Rev. D 93 025014 [23] Kohlfurst C 2015 Electron-positron pair production in inhomogeneous electromagnetic fields (Ph. D. Dissertation) arXiv:1512.06082 [24] Zhuang P and Heinz U W 1998 Phys. Rev. D 57 6525 [25] Ochs S and Heinz U 1998 Ann. Phys. 266 351 [26] Kohlfurst C 2015 Electron-positron pair production in inhomogeneous electromagnetic fields (Ph. D. Dissertation) arXiv:1512.06082 [27] Kohlfurst C and Alkofer R 2016 Phys. Lett. B 756 371 [28] Berenyi D and Levai P 2018 Phys. Lett. B 782 162 [29] Abdukerim N, Li Z L and Xie B S 2013 Phys. Lett. B 726 820 [30] Pfeiffer A, Cirelli C, Smolarski M, et al. 2012 Nat. Phys. 8 76 [31] Keldysh L V 1965 Sov. Phys. JETP 20 1307 [32] He L Y, Xie B S, Guo X H and Wang H Y 2012 Commun. Theor. Phys. 58 863 [33] Li Z L, Li Y J and Xie B S 2017 Phys. Rev. D 96 076010 [34] Gong C, Li Z L, Xie B S and Li Y J 2020 Phys. Rev. D 101 016008 [35] Li Z L, Lu D and Xie B S 2015 Phys. Rev. D 92 085001 [36] Kohlfurst C, Gies H and Alkofer R 2014 Phys. Rev. Lett. 112 050402 [38] Vasak D, Gyulassy M and Elze H T 1987 Annals Phys. 173 462 [39] Pfeiffer A N, Cirelli C, Landsman A S, Smolarski M, Dimitrovski D, Madsen L B and Keller U 2012 Phys. Rev. Lett. 109 083002 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|