Strain effects on optical polarisation properties in (1122) plane GaN films
Hao Guo-Dong(郝国栋)a)†, Chen Yong-Hai(陈涌海)b), Fan Ya-Ming(范亚明)a), Huang Xiao-Hui(黄晓辉)a), and Wang Huai-Bing(王怀兵)a)
a Nano-Devices and Materials Division, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215125, China; b Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract We present the theoretical results of the electronic band structure of wurtzite GaN films under biaxial strains in the (1122)-plane. The calculations are performed by the κ• p perturbation theory approach through using the effective-mass Hamiltonian for an arbitrary direction. The results show that the transition energies decrease with the biaxial strains changing from –0.5% to 0.5%. For films of (1122)-plane, the strains are expected to be anisotropic in the growth plane. Such anisotropic strains give rise to valence band mixing which results in dramatic change in optical polarisation property. The strain can also result in optical polarisation switching phenomena. Finally, we discuss the applications of these properties to the (1122) plane GaN-based light-emitting diode and lase diode.
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2006CB604908 and 2006CB921607), and the National Natural Science Foundation of China (Grant Nos. 60625402, 60990313 and 60990311).
Cite this article:
Hao Guo-Dong(郝国栋), Chen Yong-Hai(陈涌海), Fan Ya-Ming(范亚明), Huang Xiao-Hui(黄晓辉), and Wang Huai-Bing(王怀兵) Strain effects on optical polarisation properties in (1122) plane GaN films 2010 Chin. Phys. B 19 117104
[1]
Nakamura S, Senoh M, Iwasa N and Nagahama S 1995 Jpn. J. Appl. Phys. bf34 L797
[2]
Khan M A, Shatalov M, Maruska H P, Wang H M and Kuokstis E 2005 Jpn. J. Appl. Phys. bf44 7191
[3]
Zhang M and Ban S L 2009 Chin. Phys. B bf18 4449
[4]
Gil B 1998 Group Nitride Semiconductor Compounds (Oxford: Clarendon )
[5]
Kim M H, Schubert M F, Dai Q, Kim J K, Schubert E F, Piprek J and Park Y 2007 Appl. Phys. Lett. bf91 183507
[6]
Kuo Y K, Chang J Y, Tsai M C and Yen S H 2009 Appl. Phys. Lett. bf95 011116
[7]
Takeuchi T, Amano A and Akasaki I 2000 Jpn. J. Appl. Phys. bf39 413
[8]
Sizov D S, Bhat R, Napierala J, Gallinat C, Song K and Zah C 2009 Appl. Phys. Express bf2 071001
[9]
Masui H, Schmidt M, Fellows N, Yamada H, Iso K, Speck J S, Nakamura S and DenBaars S P 2009 Phys. Status Solidi A bf206 203
[10]
Schmidt M C, Kim K C, Sato H, Fwllows N and Masui H 2007 Jpn. J. Appl. Phys. bf46 L126
[11]
Sato H, Chung R B, Hirasawa H, Fellows N, Masui H, Wu F, Saito M, Fujito K, Speck J S, DenBaars S P and Nakamura S 2008 Appl. Phys. Lett. bf92 221110
[12]
Tyagi A, Lin Y D, Cohen D A, Saito M, Fujito K, Speck J S, DenBaars S P and Nakamura S 2008 Appl. Phys. Express bf1 091103
[13]
Asamizu H, Saito M, Fujito K, Speck J S, DenBaars S P and Nakamura S 2009 Appl. Phys. Express bf2 021002
[14]
Masui H, Cruz S C, Nakamura S and DenBaars S P 2009 J. Electron. Mater. bf38 756
[15]
Park S H and Chuang S L 1999 Phys. Rev. B bf59 4725
[16]
Yamaguchi A A 2008 Phys. Status Solidi C bf5 2329
[17]
Yamaguchi A A 2007 Jpn. J. Appl. Phys. bf46 L789
[18]
Fellows N, Sato H, Masui H, DenBaars S P and Nakamura S 2008 Jpn. J. Appl. Phys. bf47 7854
[19]
Park S H and Ahnb D 2007 Appl. Phys. Lett. bf90 013505
[20]
Ueda M, Funato M, Kojima K, Kawakami Y, Narukawa Y and Mukai T 2008 Phys. Rev. B bf78 233303
[21]
Masui H, Asamizu1 H, Tyagi A, DeMille N F, Nakamura S and DenBaars S P 2009 Appl. Phys. Express bf2 071002
[22]
Alemu A, Gil B, Julier M and Nakamura S 1998 Phys. Rev. B bf57 3761
[23]
Hao G H and Chen Y H 2008 Chin. Phys. Lett. 25 4139
[24]
Ghosh S, Waltereit P, Brandt O, Grahn H T and Ploog K H 2002 Phys. Rev. B bf65 075202
[25]
Ghosh S, Misra P, Grahn H T, Imer B, Nakamura S, DenBaars S P and Speck J S 2005 J. Appl. Phys. bf98 026105
[26]
Ghosh S, Misra P, Grahn H T, Imer B, Nakamura S, DenBaars S P and Speck J S 2006 Phys. Status Solidi B bf243 1441
[27]
Hao G D, Chen Y H and Hao Y F 2009 Jpn. J. Appl. Phys. bf48 041001
[28]
Chuang S L and Chang C S 1996 Phys. Rev. B bf54 2491
[29]
Kumagai M, Chuang S L and Ando H 1998 Phys. Rev. B bf57 15303
[30]
Chuang S L 1995 Physics of Optoelectronic Devices (New York: Wiley) Chap. 4
[1]
Strain compensated type II superlattices grown by molecular beam epitaxy Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.