Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(11): 117101    DOI: 10.1088/1674-1056/19/11/117101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principle study on phase Al0.8Ni3Sn0.2 in Sn-Ni-Al alloy as anode for lithium ion battery

Huang Zhao-Wen(黄钊文)a), Hu She-Jun(胡社军)a), Hou Xian-Hua(侯贤华)a), Zhao Ling-Zhi(赵灵智)b), Ru Qiang(汝强) a),Li Wei-Shan(李伟善)b), and Zhang Zhi-Wen(张志文)a)
a School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China; b Key Laboratory of Electrochemical Technology on Energy Storage and Power Generation of Guangdong Higher Education Institutes, South China Normal University, Guangzhou 510006, China
Abstract  The mechanism of lithium intercalation/deintercalation for phase Al0.8Ni3Sn0.2 as anode material used in lithium ion battery was studied carefully based on the first-principle plane wave pseudo-potential method. The calculated results indicated that Sn–Ni–Al alloy had high theoretical capacity when used as anode material, however, there was high initial irreversible capacity loss because of the large volume expansion. Therefore the technological parameters during preparing the Sn–Ni–Al anode should be controlled strictly to make the content of Al0.8Ni3Sn0.2 phase as low as possible and to make the anode consist of promising Sn–Ni and Al–Ni phases. For comparison, an experiment based on magnetron sputtering was done. The result showed that the calculation is in good agreement with the experiment. We found that the first-principle investigation method is of far-reaching significance in synthesising new commercial anode materials with high capacity and good cycle performance.
Keywords:  Sn–Ni–Al alloy      first-principle      lithium ion battery  
Received:  04 January 2009      Revised:  18 June 2010      Accepted manuscript online: 
PACS:  82.45.Fk (Electrodes)  
  82.47.Aa (Lithium-ion batteries)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 50771046), China Postdoctoral Science Foundation (Grant No. 20080440764), and Guangdong Province Natural Science Foundation (Grant No. 9451063101002082).

Cite this article: 

Huang Zhao-Wen(黄钊文), Hu She-Jun(胡社军), Hou Xian-Hua(侯贤华), Zhao Ling-Zhi(赵灵智), Ru Qiang(汝强),Li Wei-Shan(李伟善), and Zhang Zhi-Wen(张志文) First-principle study on phase Al0.8Ni3Sn0.2 in Sn-Ni-Al alloy as anode for lithium ion battery 2010 Chin. Phys. B 19 117101

[1] Bruo S 1995 Nature 373 557
[2] Megahed S and Scrosati B 1994 J. Power Sources 51 79
[3] Wang C, Galobardes F and Madou M 2006 Diamond and Related Materials 15 1930
[4] Nishikawa K, Fukunaka Y, Sakka T, Ogata Y and Selman J R 2007 J. Power Sources 174 668
[5] Lee H Y, Jang S W, Lee S M, Lee S J and Baik H K 2002 J. Power Sources 112 8
[6] Ehrlich G M, Durand C, Chen X, Hugener T A, Spiess F and Suib S L 2000 J. Electrochem. Soc. 147 886
[7] Hou X H, Hu S J, Li W S, Zhao L Z and Yu H W 2008 Rare Metal Materials and Engineering 37 827 (in Chinese)
[8] Wang K, He X M, Wang L, Ren J G, Jiang C Y and Wan C R 2006 it J. Electrochem. Soc. 153 1859
[9] Larcher D, Beaulieu L Y, Macneil D D and Dahn J R 2000 J. Electrochem. Soc. 147 1658
[10] Hou Z F, Liu H Y, Zhu Z Z, Huang M C and Yang Y 2003 Acta Phys. Sin. 52 952 (in Chinese)
[11] Ke F S, Huang L, Wei H B, Cai J S, Fan X Y, Yang F Z and Sun S G 2007 J. Power Sources 170 450
[12] Tamura N, Fujimoto A, Kamino M and Fujitani S 2004 it Electrochim. Acta 49 1949
[13] Valvo M, Lafont U, Simonin L and Kelder E M 2007 J. Power Sources 174 428
[14] Kitamura S, Wang L, Tanase S, Obata K and Sakai T 2003 it Electrochemistry 71 1070
[15] Yu H W, Hu S J, Hou X H, Ru Q, Chen T J and Li W S 2009 it Materials Science Forum bf610--613 467
[16] Hou X H, Hu S J, Li W S, Ru Q, Yu H W and Huang Z W 2008 it Chin. Phys. B 17 3422
[17] Jones R O and Gunnarsson O 1989 Rev. Mod. Phys. 61 689
[18] Dreizler R M and Gross E K U 1990 Density Functional Theory (Berlin: Springer Vertag)
[19] Becke A D 1988 Phys. Rev. A 38 3098
[20] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[21] Vanderbilt D 1990 Phys. Rev. B 41 7892
[22] Hou X H, Hu S J, Li W S, Zhao L Z, Yu H W and Tan C L 2008 it Acta Phys. Sin. 57 2374 (in Chinese)
[23] Mao O, Dunlap R A, Courtney I A and Dahn J R 1998 J. Electrochem. Soc. 145 4195
[24] Fan X Y, Zhuang Q C, Jiang H H, Huang L, Dong Q F and Sun S G 2007 Acta Phys. Chim. Sin. 23 973 (in Chinese)
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[9] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[10] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[11] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[12] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[13] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[14] Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍). Chin. Phys. B, 2022, 31(5): 056105.
[15] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
No Suggested Reading articles found!