CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Comparisons of ZnO codoped by group IIIA elements (Al, Ga, In) and N: a first-principle study |
Li Ping(李平)a)†, Deng Sheng-Hua(邓胜华)b), Zhang Li(张莉)a), Yu Jiang-Ying(余江应)a), and Liu Guo-Hong(刘果红) a) |
a Department of Mathematics and Physics, Anhui University of Architecture, Hefei 230022, China; b School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China |
|
|
Abstract The electronic structures and effective masses of the N mono-doped and Al–N, Ga–N, In–N codoped ZnO system have been calculated by a first-principle method, and comparisons among different doping cases are made. According to the results, the impurity states in the codoping cases are more delocalised compared to the N mono-doping case, which means a better conductive behaviour can be obtained by codoping. Besides, compared to the Al–N and Ga–N codoping cases, the hole effective mass of In–N codoped system is much smaller, indicating the p-type conductivity can be more enhanced by In–N codoping.
|
Received: 18 April 2010
Revised: 25 June 2010
Accepted manuscript online:
|
PACS:
|
61.72.uj
|
(III-V and II-VI semiconductors)
|
|
71.15.-m
|
(Methods of electronic structure calculations)
|
|
71.18.+y
|
(Fermi surface: calculations and measurements; effective mass, g factor)
|
|
71.20.Nr
|
(Semiconductor compounds)
|
|
71.55.Gs
|
(II-VI semiconductors)
|
|
72.80.Ey
|
(III-V and II-VI semiconductors)
|
|
Fund: Project supported by the Special Foundation for Young Scientists of Anhui Province, China (Grant No. 2009SQRZ097ZD) and the Foundation of Anhui University of Architecture (Grant No. 20070601). |
Cite this article:
Li Ping(李平), Deng Sheng-Hua(邓胜华), Zhang Li(张莉), Yu Jiang-Ying(余江应), and Liu Guo-Hong(刘果红) Comparisons of ZnO codoped by group IIIA elements (Al, Ga, In) and N: a first-principle study 2010 Chin. Phys. B 19 117102
|
[1] |
Klingshirn C 2007 Chem. Phys. Chem. 8 782
|
[2] |
Tang Z K, Wong G K, Kawasaki P, Kawasaki M, Ohtomo A, Koinuma H and Segawa Y 1998 Appl. Phys. Lett. 72 3270
|
[3] |
Xu W Z, Ye Z Z, Zhou T, Zhao B H, Zhu L P and Huang J Y 2004 J. Cryst. Growth 265 133
|
[4] |
Kang H S, Ahn B D, Kim J H, Kim G H, Lim S H, Chang H W and Lee S Y 2006 Appl. Phys. Lett. 88 202108
|
[5] |
Du G, Ma Y, Zhang Y and Yang T 2005 Appl. Phys. Lett. 87 213103
|
[6] |
Look D C, Reynolds D C, Litton C W, Jones R L, Eason D B and Cantwell G 2002 Appl. Phys. Lett. 81 1830
|
[7] |
Rommeluere J F, Svob L, Jomard F, Mimila-Arroyo J, Lusson A, Sallet V and Marfaing Y 2003 Appl. Phys. Lett. 83 287
|
[8] |
Xu W Z, Ye Z Z, Zeng Y J, Zhu L P, Zhao B H, Jiang L, Lu J G, He H P and Zhang S B 2006 Appl. Phys. Lett. 88 173506
|
[9] |
Tsukazaki A, Ohtomo A, Onuma T, Ohtani M, Makino T, Sumiya M, Ohtani K, Chichibu S, Fuke S, Segawa Y, Ohno H, Koinuma H and Kawasaki M 2005 Nat. Mater. 4 42
|
[10] |
Yu Zh G, Wu P and Gong H 2006 Appl. Phys. Lett. 88 132114
|
[11] |
Xiu F X, Yang Z, Mandalapu L J, Liu J L and Beyermann W P 2006 Appl. Phys. Lett. 88 052106
|
[12] |
Vaithianathan V, Lee B T and Kima S S 2006 J. Appl. Phys. 98 043519
|
[13] |
Vaithianathan V, Lee B T, Chang Ch H, Asokan K and Kim S S 2006 Appl. Phys. Lett. 88 112103
|
[14] |
Vaithianathan V, Lee B T and Kim S S 2005 Appl. Phys. Lett. 86 062101
|
[15] |
Mandalapu L J, Yang Z, Xiu F X, Zhao D T and Liu J L 2006 Appl. Phys. Lett. 88 092103
|
[16] |
Xiu F X, Yang Z, Mandalapu L J, Zhao D T, Liua J L and Beyermann W P 2005 Appl. Phys. Lett. 87 152101
|
[17] |
Yuan G D, Ye Z Z, Zhu L P, Qian Q, Zhao B H and Fan R X 2005 Appl. Phys. Lett. 86 202106
|
[18] |
Bian J M, Li X M, Zhang C Y and Chen L D 2004 Appl. Phys. Lett. 84 3783
|
[19] |
Dai L P, Deng H, Chen J J and Wei M 2007 Solid State Commun. 143 378
|
[20] |
Zhu Q Y, Ye Z Z, Yuan G D, Huang J Y, Zhu L P, Zhao B H and Lu J G 2006 Appl. Surf. Sci. 253 1903
|
[21] |
Kumar M, Kim T H, Kim S S and Lee B T 2006 Appl. Phys. Lett. 89 112103
|
[22] |
Chen L L, Lu J G, Ye Z Z, Lin Y M, Zhao B H, Ye Y M, Li J S and Zhu L P 2005 Appl. Phys. Lett. 87 252106
|
[23] |
Cao Y, Miao L, Tanemura S, Tanemura M, Kuno Y and Hayashi Y 2006 Appl. Phys. Lett. 88 251116
|
[24] |
Huang G Y, Wang Ch Y and Wang J T 2009 Scripta Materialia 61 324
|
[25] |
Shen Y Q, Mi L, Xu X F, Wu J D, Wang P N, Ying Zh F and Xu N 2008 Solid State Commun. 148 301
|
[26] |
Duan X Y, Zhao Y J and Yao R H 2008 Solid State Commun. 147 194
|
[27] |
Zuo C Y, Wen J and Bai Y L 2010 Chin. Phys. B 19 047101
|
[28] |
Liu X C, Lu ZH and Zhang F M 2010 Chin. Phys. B 19 027502
|
[29] |
Huang G Y, Wang C Y and Wang J T 2010 Chin. Phys. B 19 013101
|
[30] |
Vispute R D, Talyansky V, Choopun S, Sharma P P, Venkatesan T, He M, Tang X, Halpern J B, Spencer M G, Li Y X and Salamanca-Riba L G 1998 Appl. Phys. Lett. 73 348
|
[31] |
Kress G and Furthmuller J 1996 Phys. Rev. B 54 11169
|
[32] |
Hamarm D R, Schhter M and Chiang C 1979 Phys. Rev. Lett. 43 1494
|
[33] |
Perdew J P, Chevary J A, Vosko S H, Jackson K A, Perderson M R and Singh D J 1992 Phys. Rev. B 46 6671
|
[34] |
Schleife A, Fuchs F, Furthmuller J and Bechstedt F 2006 Phys. Rev. B 73 245212
|
[35] |
Wardle M G, Goss J P and Briddon P R 2006 Phys. Rev. Lett. 96 205504
|
[36] |
Imai Y, Watanabe A and Shimono I 2003 J. Mater. Sci. --Mater. Electron. 14 149
|
[37] |
Oshikiri M, Aryasetiawan F, Imanaka Y and Kido G 2002 Phys. Rev. B 66 125204
|
[38] |
Oshikiri M, Imanaka Y, Aryasetiawan F and Kido G 2001 Physica B 298 472
|
[39] |
Zhou C and Kang J 2004 13th International Conference on Semiconducting and Insulating Materials SIMC-XIII-2004, Beijing, September, pp81--84
|
[40] |
Pearton S J, Norton D P, Ip K, Heo Y W and Steiner T 2004 J. Vac. Sci. Technol. B 22 932
|
[41] |
Wang L and Giles N C 2004 Appl. Phys. Lett. 84 3049
|
[42] |
Thonke K, Gruber Th, Teofilov N, Sch"onfelder R, Waag A and Sauer R 2001 Physica B 308--310 945 endfootnotesize
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|