Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(11): 117102    DOI: 10.1088/1674-1056/19/11/117102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Comparisons of ZnO codoped by group IIIA elements (Al, Ga, In) and N: a first-principle study

Li Ping(李平)a)†, Deng Sheng-Hua(邓胜华)b), Zhang Li(张莉)a), Yu Jiang-Ying(余江应)a), and Liu Guo-Hong(刘果红) a)
a Department of Mathematics and Physics, Anhui University of Architecture, Hefei 230022, China; b School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China
Abstract  The electronic structures and effective masses of the N mono-doped and Al–N, Ga–N, In–N codoped ZnO system have been calculated by a first-principle method, and comparisons among different doping cases are made. According to the results, the impurity states in the codoping cases are more delocalised compared to the N mono-doping case, which means a better conductive behaviour can be obtained by codoping. Besides, compared to the Al–N and Ga–N codoping cases, the hole effective mass of In–N codoped system is much smaller, indicating the p-type conductivity can be more enhanced by In–N codoping.
Keywords:  first-principles      ZnO      conductivity      doping  
Received:  18 April 2010      Revised:  25 June 2010      Accepted manuscript online: 
PACS:  61.72.uj (III-V and II-VI semiconductors)  
  71.15.-m (Methods of electronic structure calculations)  
  71.18.+y (Fermi surface: calculations and measurements; effective mass, g factor)  
  71.20.Nr (Semiconductor compounds)  
  71.55.Gs (II-VI semiconductors)  
  72.80.Ey (III-V and II-VI semiconductors)  
Fund: Project supported by the Special Foundation for Young Scientists of Anhui Province, China (Grant No. 2009SQRZ097ZD) and the Foundation of Anhui University of Architecture (Grant No. 20070601).

Cite this article: 

Li Ping(李平), Deng Sheng-Hua(邓胜华), Zhang Li(张莉), Yu Jiang-Ying(余江应), and Liu Guo-Hong(刘果红) Comparisons of ZnO codoped by group IIIA elements (Al, Ga, In) and N: a first-principle study 2010 Chin. Phys. B 19 117102

[1] Klingshirn C 2007 Chem. Phys. Chem. 8 782
[2] Tang Z K, Wong G K, Kawasaki P, Kawasaki M, Ohtomo A, Koinuma H and Segawa Y 1998 Appl. Phys. Lett. 72 3270
[3] Xu W Z, Ye Z Z, Zhou T, Zhao B H, Zhu L P and Huang J Y 2004 J. Cryst. Growth 265 133
[4] Kang H S, Ahn B D, Kim J H, Kim G H, Lim S H, Chang H W and Lee S Y 2006 Appl. Phys. Lett. 88 202108
[5] Du G, Ma Y, Zhang Y and Yang T 2005 Appl. Phys. Lett. 87 213103
[6] Look D C, Reynolds D C, Litton C W, Jones R L, Eason D B and Cantwell G 2002 Appl. Phys. Lett. 81 1830
[7] Rommeluere J F, Svob L, Jomard F, Mimila-Arroyo J, Lusson A, Sallet V and Marfaing Y 2003 Appl. Phys. Lett. 83 287
[8] Xu W Z, Ye Z Z, Zeng Y J, Zhu L P, Zhao B H, Jiang L, Lu J G, He H P and Zhang S B 2006 Appl. Phys. Lett. 88 173506
[9] Tsukazaki A, Ohtomo A, Onuma T, Ohtani M, Makino T, Sumiya M, Ohtani K, Chichibu S, Fuke S, Segawa Y, Ohno H, Koinuma H and Kawasaki M 2005 Nat. Mater. 4 42
[10] Yu Zh G, Wu P and Gong H 2006 Appl. Phys. Lett. 88 132114
[11] Xiu F X, Yang Z, Mandalapu L J, Liu J L and Beyermann W P 2006 Appl. Phys. Lett. 88 052106
[12] Vaithianathan V, Lee B T and Kima S S 2006 J. Appl. Phys. 98 043519
[13] Vaithianathan V, Lee B T, Chang Ch H, Asokan K and Kim S S 2006 Appl. Phys. Lett. 88 112103
[14] Vaithianathan V, Lee B T and Kim S S 2005 Appl. Phys. Lett. 86 062101
[15] Mandalapu L J, Yang Z, Xiu F X, Zhao D T and Liu J L 2006 Appl. Phys. Lett. 88 092103
[16] Xiu F X, Yang Z, Mandalapu L J, Zhao D T, Liua J L and Beyermann W P 2005 Appl. Phys. Lett. 87 152101
[17] Yuan G D, Ye Z Z, Zhu L P, Qian Q, Zhao B H and Fan R X 2005 Appl. Phys. Lett. 86 202106
[18] Bian J M, Li X M, Zhang C Y and Chen L D 2004 Appl. Phys. Lett. 84 3783
[19] Dai L P, Deng H, Chen J J and Wei M 2007 Solid State Commun. 143 378
[20] Zhu Q Y, Ye Z Z, Yuan G D, Huang J Y, Zhu L P, Zhao B H and Lu J G 2006 Appl. Surf. Sci. 253 1903
[21] Kumar M, Kim T H, Kim S S and Lee B T 2006 Appl. Phys. Lett. 89 112103
[22] Chen L L, Lu J G, Ye Z Z, Lin Y M, Zhao B H, Ye Y M, Li J S and Zhu L P 2005 Appl. Phys. Lett. 87 252106
[23] Cao Y, Miao L, Tanemura S, Tanemura M, Kuno Y and Hayashi Y 2006 Appl. Phys. Lett. 88 251116
[24] Huang G Y, Wang Ch Y and Wang J T 2009 Scripta Materialia 61 324
[25] Shen Y Q, Mi L, Xu X F, Wu J D, Wang P N, Ying Zh F and Xu N 2008 Solid State Commun. 148 301
[26] Duan X Y, Zhao Y J and Yao R H 2008 Solid State Commun. 147 194
[27] Zuo C Y, Wen J and Bai Y L 2010 Chin. Phys. B 19 047101
[28] Liu X C, Lu ZH and Zhang F M 2010 Chin. Phys. B 19 027502
[29] Huang G Y, Wang C Y and Wang J T 2010 Chin. Phys. B 19 013101
[30] Vispute R D, Talyansky V, Choopun S, Sharma P P, Venkatesan T, He M, Tang X, Halpern J B, Spencer M G, Li Y X and Salamanca-Riba L G 1998 Appl. Phys. Lett. 73 348
[31] Kress G and Furthmuller J 1996 Phys. Rev. B 54 11169
[32] Hamarm D R, Schhter M and Chiang C 1979 Phys. Rev. Lett. 43 1494
[33] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Perderson M R and Singh D J 1992 Phys. Rev. B 46 6671
[34] Schleife A, Fuchs F, Furthmuller J and Bechstedt F 2006 Phys. Rev. B 73 245212
[35] Wardle M G, Goss J P and Briddon P R 2006 Phys. Rev. Lett. 96 205504
[36] Imai Y, Watanabe A and Shimono I 2003 J. Mater. Sci. --Mater. Electron. 14 149
[37] Oshikiri M, Aryasetiawan F, Imanaka Y and Kido G 2002 Phys. Rev. B 66 125204
[38] Oshikiri M, Imanaka Y, Aryasetiawan F and Kido G 2001 Physica B 298 472
[39] Zhou C and Kang J 2004 13th International Conference on Semiconducting and Insulating Materials SIMC-XIII-2004, Beijing, September, pp81--84
[40] Pearton S J, Norton D P, Ip K, Heo Y W and Steiner T 2004 J. Vac. Sci. Technol. B 22 932
[41] Wang L and Giles N C 2004 Appl. Phys. Lett. 84 3049
[42] Thonke K, Gruber Th, Teofilov N, Sch"onfelder R, Waag A and Sauer R 2001 Physica B 308--310 945 endfootnotesize
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[5] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[6] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[7] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[8] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[9] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[10] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[11] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[12] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[13] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[14] A novel monoclinic phase and electrically tunable magnetism of van der Waals layered magnet CrTe2
Qidi Ren(任启迪), Kang Lai(赖康), Jiahao Chen(陈家浩), Xiaoxiang Yu(余晓翔), and Jiayu Dai(戴佳钰). Chin. Phys. B, 2023, 32(2): 027201.
[15] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
No Suggested Reading articles found!