Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(11): 113201    DOI: 10.1088/1674-1056/19/11/113201
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Temporal electronic structure of non-resonant Raman excited virtual state of P-nitroaniline by 514 nm excitation via bond polarisabilities

Wang Pei-Jie(王培杰)a)†, Fang Yan(方炎) a), and Wu Guo-Zhen(吴国祯)b)
a The Beijing Key Laboratory for Nano-Photonics and Nano-Structure, Capital Normal University, Beijing 100048, China; b Molecular and Nano Sciences Laboratory, Department of Physics, Tsinghua University, Beijing 100084, China
Abstract  We have studied the temporal bond polarisabilities of para-nitroaniline from the Raman intensities by the algorithm proposed by Wu et al. in 1987 (Tian B, Wu G, Liu G 1987 J. Chem. Phys. 87 7300). The bond polarisabilities provide much information concerning the electronic structure of the non-resonant Raman excited virtual state. At the initial moment by the 514.5 nm excitation, the tendency of the excited electrons (mapped out by the bond polarisabilities) is to spread to the molecular periphery, and the electronic structure of the Raman virtual state is close to the pseudo-quinonoidic state. When the final stage of relaxation is approached, the bond polarisabilities of those peripheral bonds relax faster than those closer to the molecular core, the phenyl ring. The molecule is in the benzenoidic form as demonstrated by the bond polarisabilities after relaxation.
Keywords:  Raman excited virtual state      bond polarisabilities      relaxation  
Received:  08 February 2010      Revised:  12 March 2010      Accepted manuscript online: 
PACS:  71.20.Rv (Polymers and organic compounds)  
  78.30.Jw (Organic compounds, polymers)  
Fund: Project supported by the Natural Science Foundation of Beijing, China (Grant No. 2082006), the National Natural Science Foundation of China (Grant No. 20773073), the Key Grant Project of Chinese Ministry of Education (Grant No. 306020), and the Special Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20060003050).

Cite this article: 

Wang Pei-Jie(王培杰), Fang Yan(方炎), and Wu Guo-Zhen(吴国祯) Temporal electronic structure of non-resonant Raman excited virtual state of P-nitroaniline by 514 nm excitation via bond polarisabilities 2010 Chin. Phys. B 19 113201

[1] Fang C and Wu G 2007 J. Raman Spectrosc. 38 1416
[2] Harrand M 1975 J. Raman Spectrosc. 4 53
[3] Epstein L M, Shubina E S, Ashkinadze L D and Kasitsyna L A 1982 Spectrochim. Acta Part A 38 317
[4] Marlow F, Hill W, Caro J and Finger G 1993 J. Raman Spectrosc. 24 603
[5] Maurizio M M 1997 J. Raman Spectrosc. 28 205
[6] Kozich V, Werncke W, Dreyer J, Brzezinka K W, Rini M, Kummrow A and Elsaesser T J 2002 Chem. Phys. 117 719
[7] Fraztdinov V M, Chanz R, Kovalenko S A and Ernsting N P 2000 J. Phys. Chem. A 104 11486
[8] Kozich V, Werncke W and Dreyer J 2002 J. Chem. Phys. 17 719
[9] Tian B, Wu G and Liu G 1987 J. Chem. Phys. 87 7300
[10] Fang C, Liu Z and Wu G 2008 J. Mol. Struct. 885 168
[11] Liu Z and Wu G 2005 Chem. Phys. 316 25
[12] Wang H and Wu G 2006 Chem. Phys. Lett. 421 460
[13] Liu Z J and Wu G Z 2006 Acta Phys. Sin. 55 6315 (in Chinese)
[14] Fang C and Wu G 2009 Acta Phys. Sin. 58 2345 (in Chinese)
[15] Chantry G W 1971 Polarisability Theory of the Raman Effect, in: Anderson A (Ed.) The Raman Effect, vo1. 1, (New York: Marcel Dekker Inc.) p1
[16] Wilson Jr E B, Decius J C and Cross P C 1955 Molecular Vibrations (New York: McGraw-Hill) p11
[17] Tanaka T, Nakajima A, Watanabe A, Ohno T and Ozaki Y 2003 J. Mol. Struct. 661 437
[18] Yoshino T and Bernstein H J 1959 Spectrochim. Acta 14 127 endfootnotesize
[1] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[2] Effect of conical intersection of benzene on non-adiabatic dynamics
Duo-Duo Li(李多多) and Song Zhang(张嵩). Chin. Phys. B, 2022, 31(8): 083103.
[3] Transient electromagnetically induced transparency spectroscopy of 87Rb atoms in buffer gas
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Zeng-Li Ba(巴曾立), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(7): 073201.
[4] Ultrafast proton transfer dynamics of 2-(2'-hydroxyphenyl)benzoxazole dye in different solvents
Simei Sun(孙四梅), Song Zhang(张嵩), Jiao Song(宋娇), Xiaoshan Guo(郭小珊), Chao Jiang(江超), Jingyu Sun(孙静俞), and Saiyu Wang(王赛玉). Chin. Phys. B, 2022, 31(2): 027803.
[5] Small activation entropy bestows high-stability of nanoconfined D-mannitol
Lin Cao(曹琳), Li-Jian Song(宋丽建), Ya-Ru Cao(曹亚茹), Wei Xu(许巍), Jun-Tao Huo(霍军涛), Yun-Zhuo Lv(吕云卓), and Jun-Qiang Wang(王军强). Chin. Phys. B, 2021, 30(7): 076103.
[6] Comprehensive studies on dielectric properties of p-methoxy benzylidene p-decyl aniline with function of temperature and frequency in planar geometry: A potential nematic liquid crystal for display devices
Pankaj Kumar Tripathi, Kunwar Vikram, Mithlesh Tiwari, and Ajay Shriram. Chin. Phys. B, 2021, 30(6): 064208.
[7] Crystallization evolution and relaxation behavior of high entropy bulk metallic glasses using microalloying process
Danhong Li(李丹虹), Changyong Jiang(江昌勇), Hui Li(栗慧), and Mahander Pandey. Chin. Phys. B, 2021, 30(6): 066401.
[8] Instability of single-walled carbon nanotubes conveying Jeffrey fluid
Bei-Nan Jia(贾北楠) and Yong-Jun Jian(菅永军). Chin. Phys. B, 2021, 30(4): 044601.
[9] Internal friction behavior of Zr59Fe18Al10Ni10Nb3 metallic glass under different aging temperatures
Israa Faisal Ghazi, Israa Meften Hashim, Aravindhan Surendar, Nalbiy Salikhovich Tuguz, Aseel M. Aljeboree, Ayad F. Alkaim, and Nisith Geetha. Chin. Phys. B, 2021, 30(2): 026401.
[10] Influence of temperature on thermal relaxation of exchange bias field in CoFe/Cu/CoFe/IrMn spin valve
Xian-Jin Qi(祁先进), Ni-Na Yang(杨妮娜), Xiao-Xu Duan(段孝旭), and Xue-Zhu Li(李雪竹). Chin. Phys. B, 2021, 30(10): 107501.
[11] Conductance and dielectric properties of hydrogen and hydroxyl passivated SiCNWs
Wan-Duo Ma(马婉铎), Ya-Lin Li(李亚林), Pei Gong(龚裴), Ya-Hui Jia(贾亚辉), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(10): 107801.
[12] Thermal effects and evolution of the defect concentration based on shear modulus relaxation data in a Zr-based metallic glass
Qi Hao(郝奇), Ji-Chao Qiao(乔吉超), E V Goncharova, G V Afonin, Min-Na Liu(刘敏娜), Yi-Ting Cheng(程怡婷), V A Khonik. Chin. Phys. B, 2020, 29(8): 086402.
[13] Thickness-dependent structural stability and transition in molybdenum disulfide under hydrostatic pressure
Jiansheng Dong(董健生), Gang Ouyang(欧阳钢). Chin. Phys. B, 2020, 29(8): 086403.
[14] Effect of interface magnetization depinning on the frequency shift of ferromagnetic and spin wave resonance in YIG/GGG films
Fanqing Lin(林凡庆), Shouheng Zhang(张守珩), Guoxia Zhao(赵国霞), Hongfei Li(李洪飞), Weihua Zong(宗卫华), Shandong Li(李山东). Chin. Phys. B, 2020, 29(6): 067601.
[15] Uncovering the internal structure of five-fold twinned nanowires through 3D electron diffraction mapping
Xin Fu(付新). Chin. Phys. B, 2020, 29(6): 068101.
No Suggested Reading articles found!