Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(11): 113102    DOI: 10.1088/1674-1056/19/11/113102
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Accurate calculations of the helium atom in magnetic fields

Zhao Ji-Jun(赵继军), Wang Xiao-Feng(王晓峰), and Qiao Hao-Xue(乔豪学)
Department of Physics, Wuhan University, Wuhan 430072, China
Abstract  The 110+, 11(-1)+and 11(-2)+ states of the helium atom in the magnetic field regime between 0 and 100 a.u. are studied using a full configuration-interaction (CI) approach. The total energies, derivatives of the total energy with respect to the magnetic field and ionisation energies are calculated with Hylleraas-like functions in spherical coordinates in low to intermediate fields and Hylleraas–Gaussian functions in cylindrical coordinates in intermediate to high fields, respectively. In intermediate fields, the total energies and ionisation energies are determined in terms of Hermite interpolation, based on the results obtained with the two above-mentioned basis functions. Calculations show that the current method can produce lower total energies and larger ionisation energies, and make the two ionisation energy curves obtained with the two above-mentioned basis functions join smoothly in intermediate fields. Comparisons are also made with previous works.
Keywords:  strong magnetic field      helium atom      total energy      ionisation energy  
Received:  09 June 2010      Revised:  02 July 2010      Accepted manuscript online: 
PACS:  31.15.-p (Calculations and mathematical techniques in atomic and molecular physics)  
  31.15.ve (Electron correlation calculations for atoms and ions: ground state)  
  31.15.vj (Electron correlation calculations for atoms and ions: excited states)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10874133).

Cite this article: 

Zhao Ji-Jun(赵继军), Wang Xiao-Feng(王晓峰), and Qiao Hao-Xue(乔豪学) Accurate calculations of the helium atom in magnetic fields 2010 Chin. Phys. B 19 113102

[1] Ostriker J P and Hartwick F D A 1968 Astrophys. J. 153 797
[2] Kemp J C, Swedlund J B, Landstreet J D and Angel J R P 1970 Astrophys. J. 161 L77
[3] Trumper J, Pietsch W, Reppin C, Voges W, Staubert R and Kendziorra E 1978 Astrophys. J. 219 L105
[4] Elliott R J and Loudon R 1960 J. Phys. Chem. Solids 15 196
[5] Wan Y, Ortiz G and Phillips P 1995 Phys. Rev. Lett. 75 2879
[6] Rosner W, Wunner G, Herold H and Ruder H 1984 J. Phys. B: At. Mol. Phys. 17 29
[7] Ruder H, Wunner G, Herold H and Geyer F 1994 Atoms in Strong Magnetic Fields (Berlin: Springer)
[8] Kravchenko Y P, Liberman M A and Johansson B 1996 Phys. Rev. A 54 287
[9] Kravchenko Y P, Liberman M A and Johansson B 1996 Phys. Rev. Lett. 77 619
[10] Thurner G, Korbel H, Braun M, Herold H, Ruder H and Wunner G 1993 J. Phys. B: At. Mol. Opt. Phys. 26 4719
[11] Jones M D, Ortiz G and Ceperley D M 1996 Phys. Rev. A 54 219
[12] Scrinzi A 1998 Phys. Rev. A 58 3879
[13] Hesse M and Baye D 2004 J. Phys. B: At. Mol. Opt. Phys. 37 3937
[14] Becken W, Schmelcher P and Diakonos F K 1999 J. Phys. B: At. Mol. Opt. Phys. 32 1557
[15] Becken W and Schmelcher P 2000 J. Phys. B: At. Mol. Opt. Phys. 33 545
[16] Becken W and Schmelcher P 2001 Phys. Rev. A 63 053412
[17] Jordan S, Schmelcher P, Becken W and Schweizer W 1998 Astron. Astrophys. 336 L33
[18] Jordan S, Schmelcher P and Becken W 2001 Astron. Astrophys. 376 614
[19] Wang X F and Qiao H X 2008 Phys. Rev. A 77 043414
[20] Wang X F, Zhao J J and Qiao H X 2009 Phys. Rev. A 80 053425
[21] Kono A and Hattori S 1984 Phys. Rev. A 29 2981
[22] cSakirovglu S, Dovgan "U, Yhi ldhi z A, Akg"ung"or K, Epik H, Erg"un Y, Sarhi H and S"okmen .I 2009 Chin. Phys. B 18 1578
[23] cSakirovglu S, Akg"ung"or K and S"okmen .I 2009 Chin. Phys. B 18 2238
[24] Persson B J and Taylor P R 1996 J. Chem. Phys. 105 5915
[25] Drake G W F, Cassar M M and Nistor R A 2002 Phys. Rev. A 65 054501
[26] Drake G W F and Yan Z C 1992 Phys. Rev. A 46 2378
[27] Jones M D, Ortiz G and Ceperley D M 1999 Phys. Rev. A 59 2875 endfootnotesize
[1] Laser-assisted XUV double ionization of helium atoms: Intensity dependence of joint angular distributions
Fengzheng Zhu(朱风筝), Genliang Li(黎根亮), Aihua Liu(刘爱华). Chin. Phys. B, 2020, 29(7): 073202.
[2] Charge transfer of He2+ with H in a strong magnetic field
Liu Chun-Lei (刘春雷), Zou Shi-Yang (邹士阳), He Bin (何斌), Wang Jian-Guo (王建国). Chin. Phys. B, 2015, 24(9): 093402.
[3] High accuracy calculation of the hydrogen negative ion in strong magnetic fields
Zhao Ji-Jun(赵继军), Wang Xiao-Feng(王晓峰), and Qiao Hao-Xue(乔豪学). Chin. Phys. B, 2011, 20(5): 053101.
[4] Effect of strong magnetic field on chemical potential and electron capture in magnetar
Gao Jie(高杰), Luo Zhi-Quan(罗志全), Liu Wei-Wei(刘伟伟), and Li Gang(李港). Chin. Phys. B, 2010, 19(9): 099701.
[5] Effect of superstrong magnetic field on electron screening at the crusts of neutron stars
Liu Jing-Jing(刘晶晶). Chin. Phys. B, 2010, 19(9): 099601.
[6] Statistic properties of Fermi gas in a strong magnetic field
Men Fu-Dian(门福殿) and Fan Zhao-Lan(范召兰). Chin. Phys. B, 2010, 19(3): 030502.
[7] Nuclear energy generation rates on magnetar surfaces
Luo Zhi-Quan(罗志全), Liu Hong-Lin(刘宏林) , Liu Jing-Jing(刘晶晶), and Lai Xiang-Jun(赖祥军). Chin. Phys. B, 2009, 18(1): 377-381.
[8] Effect of superstrong magnetic fields on thermonuclear reaction rates on the surface of magnetars
Liu Hong-Lin(刘宏林), Luo Zhi-Quan(罗志全),Lai Xiang-Jun(赖祥军), and Liu Jing-Jing(刘晶晶) . Chin. Phys. B, 2008, 17(6): 2317-2320.
[9] Effect of strong magnetic field on electron capture of iron group nuclei in crusts of neutron stars
Liu Jing-Jing(刘晶晶), Luo Zhi-Quan(罗志全), Liu Hong-Lin(刘宏林), and Lai Xiang-Jun(赖祥军). Chin. Phys. B, 2007, 16(9): 2671-2675.
[10] Influence of strong magnetic field on $\beta$ decay in the crusts of neutron stars
Zhang Jie (张洁), Liu Men-Quan (刘门全), Luo Zhi-Quan (罗志全). Chin. Phys. B, 2006, 15(7): 1477-1480.
[11] An effective potential method for the calculation of hydrogen molecule ion energy in a strong magnetic field
Jiao Zhi-Yong (焦志勇), Li Yu-Cheng (李毓成). Chin. Phys. B, 2002, 11(5): 467-471.
No Suggested Reading articles found!