Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(10): 108201    DOI: 10.1088/1674-1056/19/10/108201
CROSS DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Influence of Pb adatom on adsorption of oxygen molecules on Pb(111) surface: a first-principles study

Yang Yu(杨宇)
Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Abstract  Using first-principles calculations, we systematically study the influence of Pb adatom on the adsorption and the dissociation of oxygen molecules on Pb(111) surface, to explore the effect of a point defect on the oxidation of the Pb(111) surface. We find that when an oxygen molecule is adsorbed near an adatom on the Pb surface, the molecule will be dissociated without any obvious barriers, and the dissociated O atoms bond with both the adatom and the surface Pb atoms. The adsorption energy in this situation is much larger than that on a clean Pb surface. Besides, for an adsorbed oxygen molecule on a clean Pb surface, a diffusing Pb adatom can also change its adsorption state and enlarge the adsorption energy for O, but it does not make the oxygen molecule dissociated. And in this situation, there is a molecule-like PbO2 cluster formed on the Pb surface.
Keywords:  Pb adatom      oxygen      adsorption      first-principles  
Received:  02 February 2010      Revised:  09 June 2010      Accepted manuscript online: 
PACS:  68.43.Bc (Ab initio calculations of adsorbate structure and reactions)  
  68.43.Mn (Adsorption kinetics ?)  
  71.15.-m (Methods of electronic structure calculations)  
  71.20.Gj (Other metals and alloys)  
  82.65.+r (Surface and interface chemistry; heterogeneous catalysis at surfaces)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10904004).

Cite this article: 

Yang Yu(杨宇) Influence of Pb adatom on adsorption of oxygen molecules on Pb(111) surface: a first-principles study 2010 Chin. Phys. B 19 108201

[1] Darling G and Holloway S 1995 Rep. Prog. Phys. 58 1595
[2] Li Y F, Yang Y, Sun B, Song H Z, Wei Y H and Zhang P 2010 Chin. Phys. B 19 058201
[3] Henrich V E and Cox P A 1994 The Surface Science of Metal Oxides (Cambridge: Cambridge University Press)
[4] Deng H Q, Hu W Y, Li W X and Zeng Z H 2006 Acta Phys. Sin. bf 55 3157 (in Chinese)
[5] Chen Z G, Huang Z G, Wu Q Y, Xu G G and Zhang J M 2009 Acta Phys. Sin. 58 1924 (in Chinese)
[6] Thürmer K, Reutt-Robey J E and Williams E D 2001 Phys. Rev. Lett. 87 186102
[7] Upton M H, Wei C M, Chou M Y, Miller T and Chiang T C 2004 Phys. Rev. Lett. 93 026802
[8] Lin H Y, Chiu Y P, Huang L W, Chen Y W, Fu T Y, Chang C S and Tsong T T 2005 Phys. Rev. Lett. 94 136101
[9] Feibelman P J 2000 Phys. Rev. B 62 17020
[10] Wei C M and Chou M Y 2002 Phys. Rev. B 66 233408
[11] Milun M, Pervan P and Woodruff D P 2002 Rep. Prog. Phys. 65 99
[12] Menzel A, Kammler M, Conrad E H, Yeh V, Hupalo M and Tringides M C 2003 Phys. Rev. B 67 165314
[13] Th"urmer K, Williams E and Robey J R 2002 Science 297 2033
[14] Ma X C, Jiang P, Qi Y, Jia J F, Yang Y, Duan W H, Li W X, Bao X H, Zhang S B and Xue Q K 2007 Proc. Nat. Acad. Sci. USA 104 9204
[15] Jiang C S, Li S C, Yu H B, Eom D, Wang X D, Ebert P, Jia J F, Xue Q K and Shih C K 2004 Phys. Rev. Lett. 92 106104
[16] Chan T L, Wang C Z, Hupalo M, Tringides M C and Ho K M 2006 Phys. Rev. Lett. 96 226102
[17] Campbell C T 1997 Surf. Sci. Rep. 27 1
[18] Henry C R 1998 Surf. Sci. Rep. 31 235
[19] Cao J X and Lu Z H 2008 Chin. Phys. B 17 3336
[20] Batzill M, Beck D E and Koela B E 2001 Appl. Phys. Lett. 78 2766
[21] Schoiswohl J, Kresse G, Surnev S, Sock M, Ramsey M G and Netzer F P 2004 Phys. Rev. Lett. 92 206103
[22] Schoiswohl J, Surnev S, Sock M, Ramsey M G, Kresse G and Netzer F P 2004 Angew. Chem. Int. Ed. 43 5546
[23] Song Z, Hrbek J and Osgood R 2005 Nano Lett. 5 1327
[24] Arribas E F, Biener J, Friend C M and Madix R J 2005 Surf. Sci. 591 1
[25] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 and references therein
[26] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[27] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[28] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[29] Wyckoff R W G 1965 Crystal Structures (New York: Wiley-Interscience)
[30] Huber K P and Herzberg G 1979 Constants of Diatomic Molecules (New York: Van Nostrand)
[31] Yang Y, Zhou G, Wu J, Duan W H, Xue Q K, Gu B L, Jiang P, Ma X C and Zhang S B 2008 J. Chem. Phys. 128 164705
[32] Electron localization function (ELF) ranges from 0 and 1. In a structural complex, it provides a good description of the polycentric bonding as a function of the real-space coordinates. Generally speaking, a higher ELF implies a lower Pauli kinetic energy, which corresponds to having localized covalent bonds or lone electron pairs (ELF = 1 would correspond to a perfect localization). For more details, see Becke A D and and Edgecombe K E 1990 J. Chem. Phys. 92 5397
[33] Noury S, Colonna F, Savin A and Silvi B 1998 it J. Mol. Struct. 450 59
[34] Norskov J K 1993 Rep. Prog. Phys. 53 1253
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[3] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[6] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[7] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[8] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[9] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[10] Molecular dynamics simulation of interaction between nanorod and phospholipid molecules bilayer
Xin Wang(王鑫), Xiang-Qin Li(李香琴), Tian-Qing Liu(刘天庆), Li-Dan Zhao(赵丽丹), Ke-Dong Song(宋克东), and Dan Ge(葛丹). Chin. Phys. B, 2023, 32(1): 016201.
[11] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[12] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[13] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[14] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[15] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
No Suggested Reading articles found!