Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(10): 108202    DOI: 10.1088/1674-1056/19/10/108202
CROSS DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Intrinsic noise analysis and stochastic simulation on transforming growth factor beta signal pathway

Wang Lu(王路)a)b) and Ouyang Qi(欧阳颀) a)b)†
The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China; b Center for Theoretical Biology, Peking University, Beijing 100871, China
Abstract  A typical biological cell lives in a small volume at room temperature; the noise effect on the cell signal transduction pathway may play an important role in its dynamics. Here, using the transforming growth factor-β signal transduction pathway as an example, we report our stochastic simulations of the dynamics of the pathway and introduce a linear noise approximation method to calculate the transient intrinsic noise of pathway components. We compare the numerical solutions of the linear noise approximation with the statistic results of chemical Langevin equations, and find that they are quantitatively in agreement with the other. When transforming growth factor-β dose decreases to a low level, the time evolution of noise fluctuation of nuclear Smad2–Smad4 complex indicates the abnormal enhancement in the transient signal activation process.
Keywords:  transforming growth factor-β      noise      chemical Langevin equation      linear noise approximation  
Received:  21 April 2010      Revised:  10 June 2010      Accepted manuscript online: 
PACS:  02.50.Ey (Stochastic processes)  
  87.15.N- (Properties of solutions of macromolecules)  
  87.15.Ya (Fluctuations)  
  87.16.A- (Theory, modeling, and simulations)  
  87.16.Xa (Signal transduction and intracellular signaling)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10721403), and the National Basic Research Program of China (Grant No. 2009CB918500).

Cite this article: 

Wang Lu(王路) and Ouyang Qi(欧阳颀) Intrinsic noise analysis and stochastic simulation on transforming growth factor beta signal pathway 2010 Chin. Phys. B 19 108202

[1] Wang H L, Fu Z P, Xu X H and Ouyang Q 2009 Chin. Phys. B 18 2082
[2] Bezrukov S M and Vodyanoy I 1995 Nature 378 362
[3] Elowitz M B, Levine A J, Siggia E D and Swain P S 2002 Science 297 1183
[4] Scott M, Ingalls B and Kaern M 2006 Chaos 16 026107
[5] Li Z Y, Xie Z W, Chen T and Ouyang Q 2009 Chin. Phys. B 18 5544
[6] Heinrich R, Neel B G and Rapoport T A 2002 Mol. Cell 9 957
[7] Raser J M and O'Shea E K 2005 Science 309 2010
[8] Eissing T, Allgower F and Bullinger E 2005 Syst. Biol. (Stevenage) 152 221
[9] Massague J 2008 Cell 134 215
[10] Shi Y and Massague J 2003 Cell 113 685
[11] Clarke D C and Liu X 2008 Trends Cell Biol. 18 430
[12] Hill C S 2009 Cell Res. 19 36
[13] Schmierer B and Hill C S 2005 Mol. Cell. Biol. 25 9845
[14] Howell J E and McAnulty R J 2006 Curr. Drug. Targets 7 547
[15] Schiller M, Javelaud D and Mauviel A 2004 J. Dermatol. Sci. 35 83
[16] Chung S W, Miles F L, Sikes R A, Cooper C R, Farach-Carson M C and Ogunnaike B A 2009 Biophys. J. 96 1733
[17] Nakabayashi J and Sasaki A 2009 J. Theor. Biol. 259 389
[18] Schmierer B, Tournier A L, Bates P A and Hill C S 2008 Proc. Nat. Acad. Sci. USA 105 6608
[19] Gillespie D T 1977 J. Phys. Chem. 81 2340
[20] Rathinam M, Petzold L R, Cao Y and Gillespie D T 2003 J. Chem. Phys. 119 12784
[21] Gardiner C W 1985 Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences (Berlin, New York: Springer-Verlag) Chap. 7
[22] Elf J and Ehrenberg M 2003 Genome Res. 13 2475
[23] Gillespie D T 2000 J. Chem. Phys. 113 297
[24] Kampen N G V 1992 Stochastic Processes in Physics and Chemistry (Amsterdam, New York: North-Holland) Chap. 10
[25] Ullah M and Wolkenhauer O 2007 IET Syst. Biol. 1 247
[26] Chen A M, Zhang J J, Yuan Z J and Zhou T S 2009 Acta Phys. Sin. 58 2804 (in Chinese)
[27] Elf J, Paulsson J, Berg O G and Ehrenberg M 2003 Biophys. J. 84 154
[28] Yan L, Wang H L and Ouyang Q 2010 Chin. Phys. Lett. 27 010501
[29] Ullah M and Wolkenhauer O 2010 Wiley Interdisciplinary Reviews: Systems Biology and Medicine Advance access published on December 10, 2009; doi:10.1002/wsbm.078.
[30] Thattai M and van Oudenaarden A 2001 Proc. Nat. Acad. Sci. USA 98 8614 endfootnotesize
[1] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋), Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[2] A cladding-pumping based power-scaled noise-like and dissipative soliton pulse fiber laser
Zhiguo Lv(吕志国), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2023, 32(2): 024207.
[3] Inhibitory effect induced by fractional Gaussian noise in neuronal system
Zhi-Kun Li(李智坤) and Dong-Xi Li(李东喜). Chin. Phys. B, 2023, 32(1): 010203.
[4] Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises
Gang Zhang(张刚), Yu-Jie Zeng(曾玉洁), and Zhong-Jun Jiang(蒋忠均). Chin. Phys. B, 2022, 31(8): 080502.
[5] Hyperparameter on-line learning of stochastic resonance based threshold networks
Weijin Li(李伟进), Yuhao Ren(任昱昊), and Fabing Duan(段法兵). Chin. Phys. B, 2022, 31(8): 080503.
[6] Nonvanishing optimal noise in cellular automaton model of self-propelled particles
Guang-Le Du(杜光乐) and Fang-Fu Ye(叶方富). Chin. Phys. B, 2022, 31(8): 086401.
[7] Fast prediction of aerodynamic noise induced by the flow around a cylinder based on deep neural network
Hai-Yang Meng(孟海洋), Zi-Xiang Xu(徐自翔), Jing Yang(杨京), Bin Liang(梁彬), and Jian-Chun Cheng(程建春). Chin. Phys. B, 2022, 31(6): 064305.
[8] Acoustic multipath structure in direct zone of deep water and bearing estimation of tow ship noise of towed line array
Zhi-Bin Han(韩志斌), Zhao-Hui Peng (彭朝晖), Jun Song(宋俊), Lei Meng(孟雷), Xiu-Ting Yang(杨秀庭), and Bing Su(苏冰). Chin. Phys. B, 2022, 31(5): 054301.
[9] Nano-friction phenomenon of Frenkel—Kontorova model under Gaussian colored noise
Yi-Wei Li(李毅伟), Peng-Fei Xu(许鹏飞), and Yong-Ge Yang(杨勇歌). Chin. Phys. B, 2022, 31(5): 050501.
[10] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[11] Deterministic remote state preparation of arbitrary three-qubit state through noisy cluster-GHZ channel
Zhihang Xu(许智航), Yuzhen Wei(魏玉震), Cong Jiang(江聪), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(4): 040304.
[12] Dynamics and near-optimal control in a stochastic rumor propagation model incorporating media coverage and Lévy noise
Liang'an Huo(霍良安) and Yafang Dong(董雅芳). Chin. Phys. B, 2022, 31(3): 030202.
[13] Development of series SQUID array with on-chip filter for TES detector
Wentao Wu(伍文涛), Zhirong Lin(林志荣), Zhi Ni(倪志), Peizhan Li(李佩展), Tiantian Liang(梁恬恬), Guofeng Zhang(张国峰), Yongliang Wang(王永良), Liliang Ying(应利良), Wei Peng(彭炜), Wen Zhang(张文), Shengcai Shi(史生才), Lixing You(尤立星), and Zhen Wang(王镇). Chin. Phys. B, 2022, 31(2): 028504.
[14] Sparse identification method of extracting hybrid energy harvesting system from observed data
Ya-Hui Sun(孙亚辉), Yuan-Hui Zeng(曾远辉), and Yong-Ge Yang(杨勇歌). Chin. Phys. B, 2022, 31(12): 120203.
[15] Vacuum-gap-based lumped element Josephson parametric amplifier
Sishi Wu(吴思诗), Dengke Zhang(张登科), Rui Wang(王锐), Yulong Liu(刘玉龙), Shuai-Peng Wang(王帅鹏), Qichun Liu(刘其春), J S Tsai(蔡兆申), and Tiefu Li(李铁夫). Chin. Phys. B, 2022, 31(1): 010306.
No Suggested Reading articles found!