Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(1): 018107    DOI: 10.1088/1674-1056/19/1/018107
CROSS DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Optical and structural properties of Ge-ion-implanted fused silica after annealing in different ambient conditions

Xiang Xia(向霞)a), Chen Meng(陈猛)a), Chen Mei-Yan(陈美艳)a), Zu Xiao-Tao(祖小涛)a),Zhu Sha(朱莎)b), and Wang Lu-Min(王鲁闽) b)
a Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, China; b Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109, USA
Abstract  Ge$^+$  ions are implanted into fused silica glass at room temperature and a fluence of $1× 10^{17}$ cm$^{- 2}$. The as-implanted samples are annealed in O2, N2 and Ar atmospheres separately. Ge$^0$, GeO and GeO2 coexist in the as-implanted and annealed samples. Annealing in different atmospheres at 600 $^\circ$C leads each composite to change its content. After annealing at 1000  $^\circ$C, there remains some amount of Ge$^0$ in the substrates. However, the content of Ge decreases due to out-diffusion. After annealing in N2, Si--N composite is formed. The absorption peak of GeO appears at 240 nm after annealing in O2 atmosphere, and a new absorption peak occurs at 418 nm after annealing in N2 atmosphere, which is attributed to the Si--N composite. There is no absorption peak appearing after annealing in Ar atmosphere. Transmission electron microscopic images confirm the formation of Ge nanoparticles in the as-implanted sample and GeO2 nanoparticles in the annealed sample. In the present study, the GeO content and the GeO2 content depend on annealing temperature and atmosphere. Three photoluminescence emission band peaks at 290, 385 and 415 nm appear after ion implantation and they become strong with the increase of annealing temperature below 700  $^\circ$C, and their photoluminescences recover to the values of as-grown samples after annealing at 700  $^\circ$C. Optical absorption and photoluminescence depend on the annealing temperature and atmosphere.
Keywords:  nanoparticles      optical absorption      photo luminescence      ion implantation  
Received:  04 August 2009      Revised:  24 August 2009      Accepted manuscript online: 
PACS:  61.72.up (Other materials)  
  61.46.Df (Structure of nanocrystals and nanoparticles ("colloidal" quantum dots but not gate-isolated embedded quantum dots))  
  61.72.Cc (Kinetics of defect formation and annealing)  
  78.40.Ha (Other nonmetallic inorganics)  
  78.55.Hx (Other solid inorganic materials)  
  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
Fund: Project supported by the Foundation for Young Scholars of University of Electronic Science and Technology of China (Grant No. L08010401JX0806).

Cite this article: 

Xiang Xia(向霞), Chen Meng(陈猛), Chen Mei-Yan(陈美艳), Zu Xiao-Tao(祖小涛),Zhu Sha(朱莎), and Wang Lu-Min(王鲁闽) Optical and structural properties of Ge-ion-implanted fused silica after annealing in different ambient conditions 2010 Chin. Phys. B 19 018107

[1] Liu F M, Zhang L D and Li G H 2005 Chin. Phys. 14 2145
[2] Han P G, Ma Z Y, Xia Z Y, Chen D Y, Xu J, Qian B, Chen S, Li W, Huang X F, Chen K J and Feng D 2007 Chin. Phys. 16 1410
[3] Liao L S, Bao X M, Zheng X Q, Li N S and Min N B 1996 Appl. Phys. Lett. 68 850
[4] Trupke T, Green M A, Würfel P, Altermatt P P, Wang A, Zhao J and Corkish R 2003 J. Appl. Phys. 94 4930
[5] Wu X L, Gao T, Bao X M, Yan F, Jiang S S and Feng D 1997 J. Appl. Phys. 82 12704
[6] Gao T, Bao X M, Yan F and Tong S 1997 Phys. Lett. A 232 321
[7] Gallagher M and Osterberg U 1993 Appl. Phys. Lett. 63 2987
[8] Zou J P, Mei Y F, Shen J K, Wu J H, Wu X L and Bao X M 2002 Phys. Lett. A 301 96
[9] Magruder R H, Weeks R A, Weller R A and Galyon R 2004 J. Non-Cryst. Solids 345--346 284
[10] Garapon J, Poumellec B, Vacher S and Trukhin A N 2002 J. Non-Cryst. Solids 311 83
[11] http://www.lasurface.com/accueil/index.php
[12] Yuen M J 1982 Appl. Opt. 21 136
[13] Skuja L N, Trukhin A N and Plaudis A E 1984 Phys. Status Solids 84 K153
[14] Cohen A J and Smith H L 1958 J. Phys. Chem. Solids 7 301
[15] Hosono H, Abe Y, Kinser D L, Weeks R A, Muta K and Kawazoe H 1992 Phys. Rev. B 46 11445
[16] Neustruev V B 1994 J. Phys. Condens. Matter 6 6901
[17] Verhaegen M, Allard L B, Brebner J L, Essid M, Roorda S and Albert J 1995 Nucl. Instr. and Meth. B 106 438
[18] Weeks R A, Magruder III R H and Wang P W 1992 J. Non-Cryst. Solids 149 122
[1] Reconstruction and functionalization of aerogels by controlling mesoscopic nucleation to greatly enhance macroscopic performance
Chen-Lu Jiao(焦晨璐), Guang-Wei Shao(邵光伟), Yu-Yue Chen(陈宇岳), and Xiang-Yang Liu(刘向阳). Chin. Phys. B, 2023, 32(3): 038103.
[2] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[3] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[4] Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞). Chin. Phys. B, 2022, 31(7): 077901.
[5] Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid
Hua-Wei Deng(邓华威) and Di-Hu Chen(陈弟虎). Chin. Phys. B, 2022, 31(7): 078701.
[6] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[7] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
[8] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[9] Surface defects, stress evolution, and laser damage enhancement mechanism of fused silica under oxygen-enriched condition
Wei-Yuan Luo(罗韦媛), Wen-Feng Sun(孙文丰), Bo Li(黎波), Xia Xiang(向霞), Xiao-Long Jiang(蒋晓龙),Wei Liao(廖威), Hai-Jun Wang(王海军), Xiao-Dong Yuan(袁晓东),Xiao-Dong Jiang(蒋晓东), and Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2022, 31(5): 054214.
[10] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[11] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[12] Transmembrane transport of multicomponent liposome-nanoparticles into giant vesicles
Hui-Fang Wang(王慧芳), Chun-Rong Li(李春蓉), Min-Na Sun(孙敏娜), Jun-Xing Pan(潘俊星), and Jin-Jun Zhang(张进军). Chin. Phys. B, 2022, 31(4): 048703.
[13] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[14] Differential nonlinear photocarrier radiometry for characterizing ultra-low energy boron implantation in silicon
Xiao-Ke Lei(雷晓轲), Bin-Cheng Li(李斌成), Qi-Ming Sun(孙启明), Jing Wang(王静), Chun-Ming Gao(高椿明), and Ya-Fei Wang(王亚非). Chin. Phys. B, 2022, 31(3): 038102.
[15] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
No Suggested Reading articles found!