Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(1): 017204    DOI: 10.1088/1674-1056/19/1/017204
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Ohmic contacts of 4H-SiC on ion-implantation layers

Wang Shou-Guo(王守国)a)c), Zhang Yan(张岩)a), Zhang Yi-Men(张义门)b), and Zhang Yu-Ming(张玉明) b)
a Department of Electronic and Information Engineering, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055, China; b School of Microelectronics, Xidian University, Xi'an 710071, China;; c School of Information Science and Technology, Northwest University, Xi'an 710127, China
Abstract  The ohmic contacts of 4H-SiC are fabricated on nitrogen ion implanted layers made by performing box-like-profile implantation three and four times. Implantation parameters such as the standard deviation σ and the projection range Rp are calculated by the Monte Carlo simulator TRIM. Ni/Cr ohmic contacts on Si-face 4H-SiC implantation layers are measured by transfer length methods (TLMs). The results show that the values of sheet resistance Rsh are 30 kΩ /□ and 4.9 kΩ/□ and the values of specific contact resistance $\rho_{\rm c}$ of ohmic contacts are 7.1× 10-4 Ω$\cdot$cm2 and 9.5 × 10-5Ω $\cdot$ cm2 for the implanted layers with implantation performed three and four times respectively.
Keywords:  silicon carbide      ion implantation      ohmic contact      sheet resistance  
Received:  03 April 2009      Revised:  18 May 2009      Accepted manuscript online: 
PACS:  73.40.Ns (Metal-nonmetal contacts)  
  68.55.Ln (Defects and impurities: doping, implantation, distribution, concentration, etc.)  
  73.40.Cg (Contact resistance, contact potential)  
  73.61.Le (Other inorganic semiconductors)  

Cite this article: 

Wang Shou-Guo(王守国), Zhang Yan(张岩), Zhang Yi-Men(张义门), and Zhang Yu-Ming(张玉明) Ohmic contacts of 4H-SiC on ion-implantation layers 2010 Chin. Phys. B 19 017204

[1] Ostling M, Lee H S, Domeij M and Zetterling C M 2006 Int. Conf. in Mixed Design p34
[2] Funaki T, Kashyap A S, Mantooth H A and Balda J C 2006 37th IEEE Power Electronics Specialist Conference p1384
[3] Treu M, Rupp R, Blaschitz P and Hilsenbeck J 2006 Superlattices and Microstructures 40 380
[4] Ostling M, Koo S M, Lee S K and Danielsson E 2002 Proc. 23rd Int. Conf. on Microelectronics p31
[5] Davis R F and Kelner G 1991 Proc. IEEE 79 677
[6] Seshadri S, Eldridge G W and Agarwal A K 1998 Appl. Phys. Lett. 72 2026
[7] Handy E M and Rao M V 1999 J. Appl. Phys. 86 746
[8] Kimoto T, Takemura O and Matsunami H 1998 J. Electron. Mater. 27 358
[9] Capano M A, Ryu S and Melloch M R 1998 J. Electron. Mater. 27 370
[10] Khemka V, Patel R and Ramungul N 1999 J. Electron. Mater. 28 167
[11] Ruggiero A, Libertino S and Roccaforte F 2006 Applied Physics A-Materials Science & Processing 543
[12] Lulli G, Albertazzi E, Bianconi M and Nipoti R 2001 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 148 573
[13] Posselt M, Schmidt B and Murthy C S 1997 J. Electrochem. Soc. 144 1496
[14] Hoon J N, Jeong H M and Jeong H Y 2006 Microelectronic Engineering 83 160
[15] Sankin V I, Shkrebiy P P and Kuznetsov A N 2001 Proceeding on Silicon Carbide and Related Materials PTS 1 and 2 1407
[16] Hallin C, Yakimova R and Pecz B 1997 J. Electron. Mater. 26 119
[17] Downey B P, Flemish J R, Liu B Z, Clark T E and Mohney S E 2009 J. Electron. Mater. 38 563
[18] Porter L M, Davis R F and Bow J S 1995 J. Mater. Res. 10 26
[19] Zhang J, Howe R T and Maboudian R 2007 Mat. Sci. Eng. B 139 235
[20] Ohyanagi T, Onose Y and Watanabe A 2008 J. Vac. Sci. Tech. B 26 1359
[21] Cao Y, Perez-Garcia S A and Nyborg L 2007 Appl. Surf. Sci. 254 139
[22] Yang H, Peng T H, Wang W J, Zhang D F and Chen X L 2007 Appl. Surf. Sci. 254 527
[23] Machac P, Barda B and Maixner J 2008 Appl. Surf. Sci. 254 1691
[24] Jennings M R, Perez-Tomas A and Davies M 2007 Solid State Electronics 51 797
[25] Chang S C, Wang S J and Uang K M 2005 Solid State Electronics 49 1937
[26] Gao Y, Tang Y, Hoshi M and Chow T P 2000 Solid State Electronics 44 1875
[27] Katulaka G and Roe K J 2002 J. Electron. Mater. 31 346
[28] Zhao J H, Tone K and Weiner S R 1997 IEEE Electron Device Lett. 18 375
[29] Tone K and Zhao J H 1999 IEEE Trans. Electron Device 46 612
[30] Berger H H 1972 Solid State Electronics 15 145
[31] Rao M V and Tucker J B 1999 J. Appl. Phys. 86 752
[32] Ruppalt L B, Stafford S, Yuan D and Jones K A 2003 Solid State Electronics 47 253
[33] Derenge M A, Jones K A, Kirchner K W and Ervin M H 2004 Solid State Electronics 48 1867
[34] Porter L M and Davis R F 1995 Materials Science and Engineering 34 83
[35] Padovani F A and Stratton R 1966 Solid State Electronics 9 695
[36] Wang S G, Zhang Y M and Zhang Y M 2003 Chin. Phys. 12 94
[37] Zhang Y M, Luo J S and Zhang Y M 1997 Chin. J. Semiconductors 18 718
[38] Oder T N, Williams J R, Bozack M J and Iyer V 1998 J. Electron. Mater. 27 324
[39] Vang H, Lazar M, Brosselard P and Raynaud C 2006 Superlattices and Microstructures 40 626
[40] Wang S G, Zhang Y M and Zhang Y M 2003 Chin. Phys. 12 89
[1] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[2] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[3] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
[4] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[5] Surface defects, stress evolution, and laser damage enhancement mechanism of fused silica under oxygen-enriched condition
Wei-Yuan Luo(罗韦媛), Wen-Feng Sun(孙文丰), Bo Li(黎波), Xia Xiang(向霞), Xiao-Long Jiang(蒋晓龙),Wei Liao(廖威), Hai-Jun Wang(王海军), Xiao-Dong Yuan(袁晓东),Xiao-Dong Jiang(蒋晓东), and Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2022, 31(5): 054214.
[6] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[7] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[8] Differential nonlinear photocarrier radiometry for characterizing ultra-low energy boron implantation in silicon
Xiao-Ke Lei(雷晓轲), Bin-Cheng Li(李斌成), Qi-Ming Sun(孙启明), Jing Wang(王静), Chun-Ming Gao(高椿明), and Ya-Fei Wang(王亚非). Chin. Phys. B, 2022, 31(3): 038102.
[9] Optical properties of He+-implanted and diamond blade-diced terbium gallium garnet crystal planar and ridge waveguides
Jia-Li You(游佳丽), Yu-Song Wang(王雨松), Tong Wang(王彤), Li-Li Fu(付丽丽), Qing-Yang Yue(岳庆炀), Xiang-Fu Wang(王祥夫), Rui-Lin Zheng(郑锐林), and Chun-Xiao Liu(刘春晓). Chin. Phys. B, 2022, 31(11): 114203.
[10] Construction and mechanism analysis on nanoscale thermal cloak by in-situ annealing silicon carbide film
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Zi-Liang Huang(黄子亮), Wen-Bo Sun(孙文博), and Yi-Yi Li(李依依). Chin. Phys. B, 2022, 31(1): 014402.
[11] Ohmic and Schottky contacts of hydrogenated and oxygenated boron-doped single-crystal diamond with hill-like polycrystalline grains
Jing-Cheng Wang(王旌丞), Hao Chen(陈浩), Lin-Feng Wan(万琳丰), Cao-Yuan Mu(牟草源), Yao-Feng Liu(刘尧峰), Shao-Heng Cheng(成绍恒), Qi-Liang Wang(王启亮), Liu-An Li(李柳暗), and Hong-Dong Li(李红东). Chin. Phys. B, 2021, 30(9): 096803.
[12] Protection of isolated and active regions in AlGaN/GaN HEMTs using selective laser annealing
Mingchen Hou(侯明辰), Gang Xie(谢刚), Qing Guo(郭清), and Kuang Sheng(盛况). Chin. Phys. B, 2021, 30(9): 097302.
[13] Mechanism of defect evolution in H+ and He+ implanted InP
Ren-Jie Liu(刘仁杰), Jia-Jie Lin(林家杰), N Daghbouj, Jia-Liang Sun(孙嘉良), Tian-Gui You(游天桂), Peng Gao(高鹏), Nie-Feng Sun(孙聂枫), and Min Liao(廖敏). Chin. Phys. B, 2021, 30(8): 086104.
[14] Formation of nano-twinned 3C-SiC grains in Fe-implanted 6H-SiC after 1500-℃ annealing
Zheng Han(韩铮), Xu Wang(王旭), Jiao Wang(王娇), Qing Liao(廖庆), and Bingsheng Li(李炳生). Chin. Phys. B, 2021, 30(8): 086107.
[15] Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes
Ying-Ying Yang(杨莹莹), Pei Gong(龚裴), Wan-Duo Ma(马婉铎), Rui Hao(郝锐), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(6): 067803.
No Suggested Reading articles found!